
Deep Reinforcement Learning in
Physical Environments containing

Continuous Action Spaces using a Prior
Model with Applications to Robotic

Control

Luke Taylor

University of Cape Town
Department of Mathematics and Applied Mathematics

Supervisor Dr. Jonathan Shock

August 2, 2018

Contents

1 Introduction 1

1.1 Reinforcement Learning . 1

1.2 Problem Motivation . 1

1.3 Problem Definition and Contribution 3

1.4 Outline . 3

2 Preliminaries 5

2.1 Markov Decision Process . 5

2.2 Policies . 7

2.3 Value Functions . 8

2.4 Deep Learning . 11

2.4.1 Backpropagation Derivation 15

2.5 Deep Reinforcement Learning . 17

3 Policy Gradients 19

3.1 Introduction . 19

3.2 Policy Gradient . 21

3.3 Deterministic Policy Gradient . 24

3.4 Deep Deterministic Policy Gradients 25

4 Robotic Grasping 29

4.1 Introduction . 29

4.1.1 Simplified Problem using MDP decomposition 31

4.2 Simulation . 34

4.2.1 Introduction . 34

4.2.2 The Arm . 36

4.2.3 The Gripper . 38

4.3 Physical Development . 40

4.4 DDPG Implementation . 41

4.5 Experiments and Results . 42

4.5.1 Training . 42

4.5.2 Testing . 43

5 Conclusion 47

iii

Bibliography 49

6 Appendix 53
6.1 Gym . 53

6.1.1 arm.py . 53
6.1.2 beer.py . 59
6.1.3 environment.py . 60
6.1.4 motor_control.py . 65

6.2 DDPG . 66
6.2.1 buffer.py . 66
6.2.2 main.py . 67
6.2.3 model.py . 70
6.2.4 train.py . 71
6.2.5 utils.py . 73

List of Figures

1.1 Overview of RL framework, extracted from [SB+98] 2
1.2 A sequence of images extracted from video, of the robot performing the

grasp task. The top row is the robot in simulation and the bottom row
is the robot in the physical environment. 3

3.1 Outline of the DDPG algorithm, extracted from the paper [Lil+15] . . 26

4.1 Overview of the robotic arm, with all the local coordinate systems (SL)i,
hinge points (Hx, Hy)i and elevation angles (θL)i. 36

4.2 Overview of the robotic gripper, portraying how the left gripper is
translated from the hinge point of the upper arm. A similar translation
is applied for the right gripper part. 39

4.3 Training results of of policies for the MDPs described in section 4.1.1 . 43
4.4 The goal coordinates that were used in the physical experiments. . . . 44
4.5 Scatter plot of the virtual displacements against the physical displace-

ments, where the displacement is the difference between the final object
position and the goal position. 45

List of Tables

4.1 Attempted goal coordinates alongside recorded offsets 45

v

Acknowledgement

I would like to thank my family for their endless support with all endeavours I have
pursued over the years, encouraging me to follow my ambitions and to never stop
dreaming.

Gratitude to the people of the Internet: Travis DeWolf for his tutorial on developing
joint limb simulations using PyGame; Vikas Yadav for his implementation of the
DDPG algorithm in PyTorch and Lilian Weng for her notes on Policy Gradient
methods. Without their notes and code this thesis would have taken a considerable
amount of time longer to complete.

Appreciation to everyone who has helped me proof read this thesis and giving me
their valuable feedback: Dr. Jonathan Shock, my brother and the Heye family. I
am grateful to everyone who has endured the considerable amount of complaining
(especially AD and Sonia) due to my simulator doing weird things or my models not
learning.

A special thanks to Dr. Jonathan Shock for granting me the possibility of pursuing
further studies in Reinforcement Learning and his great mentorship in supervising
this project; Our discussions relating to consciousness, intelligence and learning
have been very stimulating.

On a final and serious note: Thank you to my mom for passing her German heritage
onto me, giving me a passion for Weiss beer and the ability to build robots. I am of a
strong belief that an AI uprising can be mitigated, if we teach robots the true values
of life, one of which is being able to enjoy a cold one.

vii

1Introduction

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of Machine Learning that is concerned
with learning behaviour, which is characterised by a sequence of decisions. The
RL framework is simple: An agent A is situated in an environment E . The agent
observes a state st from the environment E upon which it takes an action at. On
action completion the agent receives a reward rt alongside a new environmental
state st+1. This interaction between the agent A and environment E repeats, which
is portrayed in figure 1.1.

The goal in RL is to learn behaviour for an agent A, such as to maximise the
cumulative reward received. Henceforth any objective the agent is ought to complete
is encoded in the rewarding scheme. Surprisingly, complex behaviour can be learned
in such a simple setup. An example is the RL system called AlphaGo [Sil+16]
developed by Google DeepMind, that learned to play the game of Go, an ancient
Chinese board game considered to be one of the hardest games for an Artificial
Intelligence (AI) to master. The game of Go is simple by nature, as players place
black or white stones onto a board in attempt to capture the opponent’s pieces. The
difficulty of the game arises from the number of possible board configurations, which
is larger than the number of atoms in the observable universe, hence a reason why
classic search based AI systems have failed at this game. AlphaGo managed to defeat
the world title holder Mr Lee Sedol, showcasing the power that RL has to offer.

An exciting frontier of RL is the ability to develop new solutions. For example,
DeepMind’s AlphaGo system developed new winning strategies for the game of Go,
albeit the game having been extensively studied for hundreds of years. It is natural
to wonder: What else can RL aid mankind in search for new solutions?

1.2 Problem Motivation

The success of RL has mostly been validated in virtual environments. An active
area of research is to transfer the success of RL to physical environments, where

1

Fig. 1.1: Overview of RL framework, extracted from [SB+98]

the applications are vast: Learning to drive for self driving cars; Learning intelligent
caring behaviour for human assisting robots or teaching robots in factories how to
accomplish various manufacturing objectives. There are two fundamental reasons
why the success of RL has not yet transferred to physical environments:

1. High-Sample complexity: Current RL algorithms require a large corpus of
samples to learn meaningful behaviour. These samples are collected by the
agent interacting with the environment: Apply an action, observe the new
state and reward, apply another action, record the next state and reward and
so on. In simulation, performing such interactions is quick. However, in a
physical setting such as a robot learning to grasp an object, such interactions
are painfully slow and take an extensive amount of time to complete.

2. Noisy non-stationary dynamics: The theoretical framework from which RL
methods are derived is the so called Markov Decision Process (MDP), which
mathematically represents the agent and the environment. In an MDP, it
is assumed that the transition distribution p(s′|s, a) is stationary i.e. the
probability of transitioning from state s to state s′ under action a is fixed
throughout time. However, in many physical systems, such assumptions cannot
be made, as the dynamics are time variant. In addition, many physical settings
contain noise ε ∼ N sampled from unknown distributions that overlay the
underlying transition dynamics.

The current approach of applying RL to physical settings, is to emulate the physical
environment in simulation. It is in these emulated environments that the RL model
learns. The learned model is then applied to the physical environment for deploy-
ment or for further fine tuning. A main problem with this approach is a social one:
These simulated environments are usually constructed using expensive proprietary
engines. An example is the Multi-Joint dynamics with Contact (MuJoCo) physics
engine [Tod+12] which has been used in a variety of RL related research projects

2 Chapter 1 Introduction

Fig. 1.2: A sequence of images extracted from video, of the robot performing the grasp
task. The top row is the robot in simulation and the bottom row is the robot in the
physical environment.

[Lil+15; Dua+16; Lev+16; Sch+15b], costing between 500 and 12000 dollars, de-
pending on the license type. RL research applied to robotics is thus usually limited to
research groups that have the financial budget to afford these engines, alongside the
robots themselves, which raises the question: Can RL robotics research be conducted,
without relying on expensive proprietary simulation and physics engines?

1.3 Problem Definition and Contribution

The problem investigated in this thesis is applying Reinforcement Learning to the
task of robotic grasping defined in a physical setting with a continuous action space.
The robotic grasping problem investigated is the following: A 2 degree of freedom
robotic arm with a gripper is located on a 2 dimensional surface with the objective
of having to locate an object, grasp it and move it to a variable goal position.

The means by which the problem is addressed is through the use of Deep RL methods,
in which RL is coupled with Artificial Neural Networks, a type of non-linear function
approximator; More specifically the Deep Deterministic Policy Gradient (DDPG)
algorithm [Lil+15] was adopted. In addition, all training was performed in a
custom built simulation using open-source tools, overcoming the prejudice that RL
robotics research can only be conducted with expensive proprietary simulation and
physics engines. Figure 1.2 portrays the built simulator alongside the physical robot,
showcasing that the learned behaviour in the simulator is applicable to the physical
environment.

1.4 Outline

The remaining chapters in this writeup build on each other, to give the necessary
background knowledge to the reader to understand the methods adopted in tackling
the problem outlined in the previous section. Although the content was written to

1.3 Problem Definition and Contribution 3

be as self contained as possible, it is suggested that the reader read the relevant
literature to get a deeper understanding of the methods applied. The remaining
chapters are structured as follows.

1. Preliminaries: This chapter introduces the fundamentals of Reinforcement
Learning alongside Deep Learning, and how these two fields are combined,
forming the study of Deep Reinforcement Learning.

2. Policy Gradients: In this chapter the RL paradigm of policy gradients is intro-
duced, building up the necessary knowledge to understand the Deep Deter-
ministic Policy Gradient algorithm.

3. Robotic Grasping: This chapter outlines how the robotic grasping problem was
attempted, how the simulator was constructed and linked to the physical robot,
how the DDPG algorithm was implemented and the results of benchmarking
the learned model in virtual and physical experiments.

4. Conclusion: This chapter summarises the problem investigated, reflecting on
potential reasons why certain methods failed and presents future research
directions.

4 Chapter 1 Introduction

2Preliminaries

2.1 Markov Decision Process

Markov Decision Processes (MDP) provides the necessary formalism for describing
any Reinforcement Learning problem. A MDP is a collection of objects that charac-
terises the environment, the agent and the objective. The environment is described
by a set of possible states S. The agent can choose an action a ∈ A from a set
of available actions A. During a time-step t, the environment adopts a new state
st ∈ S. The dynamics of the environment are characterised by the state transition
distribution P [St+1 = s′|St = s,At = a]. This distribution describes the probability
of transitioning to a state s′, conditioned on the environment being in the current
state s and the agent choosing action a. This is formally described by the following
definition.

A Markov Decision Process (MDP) is a six element tuple < S,A, P,R, µ, γ >.

1. S: Is a finite set of states of the environment

2. A: Is a finite set of actions available to the agent

3. P : Is a state transition distribution. It defines the probability of moving to
some state s′ given the current state s and a chosen action a, P [St+1 = s′|St =
s,At = a].

4. R : S ×A× S → R: Is a reward function

5. µ: Is an initial state distribution, defining the probability of being in an initial
state s0 ∈ S.

6. γ: Is the discount factor, where γ ∈ [0, 1].

(2.1)

Definition

For brevity, the initial state distribution µ and the discount factor γ are usually
omitted in the literature (depending on the context of the problem being investi-

5

gated). The discount factor γ is introduced for a mathematical reason of bounding
a sum, however is also used to influence the way an agent learns. The initial state
distribution µ describes the probability of the environment starting in an initial state
s0 ∈ S. This is oftentimes introduced in the literature when mathematical analysis
involving MDPs is carried out.

RL agents attempt to maximises the total discounted cumulative reward Gt. This
is a summation of all rewards that the agent can receive when moving through the
environment’s space, before reaching an absorbing state sT 1. However, when the
problem is of infinite-horizon (i.e. the trajectory of state observations and respective
action choices (s0, a0, s1, a1, . . .) is unbounded), then the summation of rewards is
unbounded. The discount factor γ is introduced to bound this summation of rewards.
This gives rise to the following definition of total discounted reward.

Return Gt is the total discounted cumulative reward from time-step t onwards which
is defined by Gt =

∑∞
k=0 γ

kRt+k+1

(2.2)

Definition

The discount factor can also be used in finite-horizon problems to influence the way
an agent learns. It establishes the means of weighting current and future rewards.
When setting γ ≈ 0, the agent places more emphasis on current rewards than
rewards from the future. However, when γ ≈ 1, the agent is more far-sighted and
places equal weighting on rewards from the future. This mechanism allows for the
manipulation of the total discounted reward, which in return changes the behaviour
of the agent, as the agent will either strive for immediate returns, or pursue a more
conservative approach that will strive for more returns from the future. The latter
is generally of more interest; Being able to plan into the future by considering the
consequences of the actions chosen now.

A state st at time t is said to satisfy the Markov property if P [St+1|St] =
P [St+1|S1, . . . , St].

(2.3)

Definition

A fundamental property that characterises MDPs is the markovian property (formally
defined above). When a stochastic process is markovian, it is considered to be

1This is a state which the agent cannot leave.

6 Chapter 2 Preliminaries

memoryless; All the relevant information is encoded in the current state of the
process. The states preceding the current state are considered irrelevant. An
example is the game of orthello; You arrive at a partially played game and continue
playing without having to know the previous states of the board.

2.2 Policies

A policy is a mapping from states s ∈ S to actions a ∈ A. This is the central problem
that reinforcement learning attempts to solve, establishing algorithms that provide
means of learning favourable policies. Policies are usually denotes by the symbol
π and can be split into two categories: A deterministic and a stochastic policy. The
deterministic policy is a mapping π : S → A and a stochastic policy is a mapping
π : S → P (A) where P (A) is the set of probability measures on the A. The choice of
policy is dependent on the problem represented by the MDP. As an example, in the
game of othello a deterministic policy would be preferred, as it is assumed that at
each step in the game the player can play an optimal move. However, in the game
of rock-paper-scissors, a stochastic policy would be optimal, as a deterministic policy
could trivially be exploited.

The objective of a policy is to maximise the expected cumulative return Gt. The
optimal policy is the policy that achieves the greatest expected cumulative return
Gt and is denoted by π∗. In any given MDP, the existence of an optimal policy is
guaranteed; There can exist more than one optimal policy in a given MDP.

There are three paradigms in RL for the construction of policies: Policy optimisation,
dynamic programming and actor-critic methods. In the policy optimisation setting,
the problem of constructing a policy is viewed as an optimisation problem. Here the
policy is directly parameterised by some function πθ containing n parameters θ ∈ Rn.
In optimising the function πθ, the parameters are shifted as to increase expected
reward Gt. There are two ways of perturbing the parameters θ; Using evolutionary
methods or using policy gradients methods. Evolutionary methods randomly perturb
the parameters θ, measure performance of πθ, and continue shifting weights in
the direction associated with favourable performance. Evolutionary methods are
simple to implement and work well in action spaces with low dimensionality n.
Some examples of evolutionary methods are the cross-entropy method [SL06], the
covariance matrix adaptation method [WP09] and the natural evolution strategies
[Wie+08]. Policy gradient methods [Sut+00; Wil92; Kak02; Sch+15b], in contrast
to evolutionary methods, apply changes to weights θ by approximating the gradient
that shifts the parameters into a space of favourable performance. These methods
are rather non-trivial to implement, however perform better in large action spaces, in

2.2 Policies 7

contrast to evolutionary methods. In dynamic programming, the objective is to learn
value functions (discussed in more detail in the next section). A well established
method of learning action-value functions is the Q-Learning algorithm [WD92].
Other algorithms for learning value functions are the policy iteration [SB+98] and
value iteration algorithm [SB+98] which fall under the class of algorithms known
as modified policy iteration. Actor-critic methods use both policy optimisation and
dynamic programming in learning a policy. In this paradigm a parameterised policy
πθ is learned via policy optimisation (which is known as the actor), and value
functions (learned via dynamic programming) are used to accelerate convergence
and to reduce variance during optimisation (which is referred to as the critic). An
example is the actor-critic method of [Lil+15] which is explained in more details in
section 3.4.

The means by which a policy is learned, is classified into two categories: On-policy
and off-policy. The distinction between these two paradigms, is how the exploration
data for the learning of the policy is generated. In the on-policy paradigm, there is
one distinct policy π that generates exploration data, and which itself gets optimised
on that data. In contrast, the off-policy paradigm makes use of two distinct policies:
A target policy πT and a behavioural policy πB. The target policy πT is the policy
that learns the optimal control whereas the behaviour policy πB is the policy that
generates the training data by exploring the environment. Henceforth, the off-policy
paradigms generalises the on-policy paradigm with the on-policy paradigm having
the target and behaviour policy being equivalent πT = πB.

2.3 Value Functions

The state-value function of a MDP is the expected return starting from a state s and
following policy π thereafter.

V π(s) = E
π

[Gt|St = s] (2.4)

Definition

8 Chapter 2 Preliminaries

The action-value function of a MDP is the expected return starting from a state s,
taking action a and following policy π thereafter.

Qπ(s, a) = E
π

[Gt|St = s,At = a] (2.5)

Definition

The expected cumulative return of a policy π in a MDP M is expressed through
the value functions V π(s) and Qπ(s, a). Value functions are fundamental in rein-
forcement learning as they enable for the comparison of policies, indirect means of
constructing a policy π and ways of reducing variance in policy gradient methods.
In addition, their bellman equation representation (discussed shortly) form the
foundation of many RL learning algorithms.

The state-value function V π(s) defines the expected return when starting in a state
s and following the policy π thereafter. The definition of the action-value function
Qπ(s, a) is similar, however here it is assumed that the environment is in state s and
an action a (this is any arbitrary legal action, which can be different to the action
chosen by the policy π(s)) is chosen before the policy π is followed.

The bellman equations for the state-value and action-value function are defined as
follows.

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
[
r(s′, a, s) + γV π(s′)

]
(2.6)

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)
[
r(s′, a, s) + γV π(s′)

]
(2.7)

Definition

The bellman equations define a recursive relation between the value function in one
state to the value functions on previous states. This is analogous to the dynamic
programming paradigm: Being able to solve a problem by knowing the solutions to
its subproblems. Having defined the bellman relation for the state-value function
V π(s) and the action-value function Qπ(s, a), the following relation between these
two functions can be observed.

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a) (2.8)

2.3 Value Functions 9

This relation showcases that one can solve the state-value function V π, action-value
function Qπ or the policy π, if one knows the values of the other two functions (as
this forms a system of linear equations). In addition, the definition of these two
value functions gives rise to a theorem know as the policy improvement theorem
2.9.

Let π, π′ ∈
∏
M be deterministic policies applicable to MDPM.

Qπ(s, π′(s)) ≥ V π(s) ∀s ∈ S =⇒ V π′(s) ≥ V π(s) (2.9)

Policy Improvement Theorem

Optimal value functions are the maximum value functions with respect to a policy.
The maximum state-value function is defined as.

V ∗(s) = max
π

V π(s) (2.10)

The maximum action-value function is defined as

Q∗(s, a) = max
π

Qπ(s, a) (2.11)

Definition

A policy π∗ is optimal if for all policies π ∈
∏
M in a given MDPM the following is

satisfied V π∗ ≥ V π.
(2.12)

Definition

Optimal value functions define the maximum amount of total expected reward
that can be received. The maximum state-value function V ∗ defines the maximum
amount of total cumulative reward from a state s ∈ S onwards and the maximum
action-value function Qπ defines the maximum amount of total cumulative reward
from a state s ∈ S taking action a ∈ A onwards. As per the definition above, these
optimal value functions are expressed in terms of a maximising policy π. Henceforth,
an optimal policy π∗ (as defined in definition 2.12) can trivially be extracted given
the optimal action-value function as follows: π∗(s) = maxa∈AQ∗(s, a)

Having defined the bellman equation for the state-value function V π and the policy
improvement theorem, one can derive the established policy iteration algorithm

10 Chapter 2 Preliminaries

for learning an optimal policy π∗ via the construction of a sequence of state-value
functions {V πi}i that converge to an optimal state-value function V ∗ in the limit
i → ∞. This algorithm starts with an arbitrary policy π0 for which its respective
state-value function V π0 is found via a method called policy evaluation, which
is derived from the bellman equation 2.6. After this construction, the policy π0

is improved on using π(s) ← argmax
a∈A(s)

Qπ(s, a) generating a new policy π1. This

procedure is continued until convergence is achieved. See [SB+98] for an detailed
construction of the algorithm alongside convergence proofs. Outlining a summary of
the algorithm, serves the purpose of motivating the importance of the definition of
the value functions and the relations and theorems that are derived using them.

The bellman optimality equations for the state-value and action-value function are
defined as follows.

V ∗(s) = max
a

E[Rt+1 + γV ∗(St+1)|St = s,At = a]

= max
a

∑
s′∈S

p(s′|s, a)
[
r(s′, a, s) + γV ∗(s′)

] (2.13)

Q∗(s, a) = E[Rt+1 + γmax
a′
Q∗(St+1, a

′)|St = s,At = a]

=
∑
s′∈S

p(s′|s, a)
[
r(s′, a, s) + γmax

a′
Q∗(s′, a′)

] (2.14)

Definition

On a closing note, using the definition of the bellman equations 2.6 and 2.7 and
the definition of the optimal value functions, one arrives at the bellman optimality
equations outlined above. The importance of these equations, is that they are
expressed independent of a policy π. Solving these equations enables the extraction
of the optimal policy π∗. These equations root the foundation of the value iteration
algorithm, which is another way of deriving a policy π in a model-based setting
using value functions.

2.4 Deep Learning

Deep Learning (DL) is a branch of Machine Learning (ML), the study concerned with
learning from data. DL has revolutionised the field of ML by pushing the frontiers
with regards to maintaining state of the art performance across various domains,
such as speech recognition [Amo+16b], translation [Bah+14] and image detection

2.4 Deep Learning 11

[Ren+15]. When talking about DL, one usually refers to the nonlinear function
approximator known as the Artificial Neural Network (ANN).

In the supervised learning paradigm we have a set of N labeled data items X =
{(xi, yi)}1...N for which we want to learn a mapping f : x → y. ANNs provide the
means of learning such a mapping. In its simplest form, when talking about ANNs,
one usually refers to a Directed Acyclic Graphs (DAG), where every node represent
an artificial neuron and every edge represents a weighting between neurons. This
setup is referred to as a feedforward neural network. There are other types of
abstractions of this setup, for example the Convolutional Neural Networks [LeC+98]
and Recurrent Neural Networks [Gro13], however they remain out of scope for this
writeup.

The feedforward neural network consists of three types of layers, an input layer, a
hidden layer and an output layer. Every layer consists of a column of nodes. There is
only one input layer and one output layer, with a variable number of hidden layers.
In reference to DL, one usually refers to ANNs with multiple hidden layers. The
more hidden layers there are, the deeper the network, allowing for more expressive
associations to be formed; This is a trend that has been observed in the development
of state of the art image recognition systems, benchmarked on the ImageNet dataset
[Den+09]. In 2012 the AlexNet [Kri+12] consisting of 8 layers had a top-5 error
rate of 15.3%; In 2014 the GoogLeNet [Sze+15] was built out of 22 layers and
scored a 6.7% top-5 error rate and in 2015, the Resnet [He+16] developed out of
152 layers, scored a top-5 error rate of 2.25%.

When talking about ANNs, one usually refers to specific modules which are groupings
of neurons. In the case of the feedforward networks, one refers to columns of neurons
as fully connected layers. 2 Every neuron in layer i is connected to every neuron in
layer i− 1. 3

The output of every node is computed as follows: Multiply the output from every
node in the previous layer by an associated weight, summate all these terms and

2In the case of Convolutional Neural Network, one gets convolutions layers and max pooling layers;
Or in Recurrent Neural Networks on get modules called LSTMs, hence the motivation of grouping
neurons by the type of computation that they perform.

3If no connection is to be established, one could set the weight of an edge to 0; However, these
weights are never manually entered, yet rather learnt.

12 Chapter 2 Preliminaries

finally pass this summation through a non-linear function (known as a activation
function). This is mathematically formalised as follows.

vij = f ij
(ni−1∑
k=1

wijkv
i−1
k + bij︸ ︷︷ ︸
zij

)
(2.15)

Here vij is the output of node j in layer i; f ij is the activation function used at this
respective node; wijk is the weighting of the edge between the kth node in layer i− 1
and the jth node in layer i; vi−1

k is the output of node k from layer i− 1; bij is a bias
term and ni−1 is the amount of nodes contained in layer i− 1.

The bias bij term is useful, in that it allows for the shifting of the activation function
along the x-axis; Which may or may not be critical in learning an expressive mapping.
In summary, it allows for a more expressive model, which would not be possible if it
were not for the weight bias. It is useful to absorb the term bij into the summation.
This can be done by adding an extra node to every layer (except the output layer)
defined by vi−1

0 = 1 for 1 ≤ i ≤ m (where 0 is the input layer and m is the output
layer) where the extra edge becomes the bias bij = wij0. Henceforth equation 2.15
can be rewritten as.

vij = f ij
(ni−1∑
k=0

wijkv
i−1
k︸ ︷︷ ︸

zij

)
(2.16)

The literature on activation functions f ij is vast; In the initial onset of ANNs, activation
functions such as the sigmoid function 4 defined by S(x) = ex

ex+1 , were a popular
choice. However, with the development of deeper networks, the vanishing gradient
problem became an issue [Hoc+01], which required activation functions that did
not suffer from this problem. 5 An activation function that solved this problem, and
which is a useful goto, is the Rectified Linear Unit (ReLu) activation function; This
function is defined by f(x) = max(0, x). This activation functions was one of the
reasons for the success of the iconic AlexNet paper [Kri+12].

4Interestingly, publishing on the properties of a single activation function [HM95] at a respected
venue was possible back in the 90s; This showcases how fast the field of Deep Learning has grown
over the years!

5The vanishing gradient occurs due to the construction of the backpropagation algorithm: Gradients
slowly dissipate for further updates from the output layer.

2.4 Deep Learning 13

A fundamental component, and which makes DL a learning paradigm, is the method
of finding the values for the weights wijk, which is known as backpropagation.
Most applications in which non-linear optimisation is performed, is done through
an iterative procedure: For example, the parameters of GLMs are found via the
Iteratively Reweighted Least Squares algorithm, or certain non-linear ODEs are
solved via the Newton-Kontorovich method. The same applies to ANNs, for which
the iterative procedure is gradient descent. In order to perform gradient descent
in the context of ANNs, one needs a cost function L(ti, yi) that defines the error
between the prediction of the network ti and the actual label that it should have
predicted yi. There is a wide array of possible cost functions L(ti, yi) available; A
classic example is the mean squared cost function defined by L(ti, yi) = 1

2(ti − yi)2.
The total error on a dataset X of N elements is then defined by.

E(X) =
N∑
i=1
L(ti, yi) (2.17)

The objective is to learn weights wijk that minimise the specified cost function. This
is achieved by updating all parameters wijk in the direction that minimise the error
E(X), which is achieved with the following update rule.

wijk ← wijk − η
∂E(X)
∂wijk

(2.18)

Here η > 0 is a hyper-parameter known as the learning rate, controlling how fast the
weights are to be updated. A too low learning rate can substantially slow down the
learning process, whereas a too high learning rate could overshoot a minimum.

∂E(X)
∂wijk

= ∂

∂wijk

N∑
i=1
L(ti, yi)

=
N∑
i=1

∂

∂wijk
L(ti, yi)

(2.19)

Note that the gradient of the error ∂E(X)
∂wi

jk

is the summation of all the gradients ∂L
∂wi

jk

,

which is shown in the equations 2.19. Henceforth, to be able to perform update rule
2.18 one has to be able to compute ∂L

∂wi
jk

. The means by which ∂L
∂wi

jk

is computed, is

accomplished via backpropagation.

14 Chapter 2 Preliminaries

2.4.1 Backpropagation Derivation

As a reminder, we make the following definition of the multivariate chain rule. Note
that in this definition, if we set m = 1 and n = 1, we get the usual chain rule that
one is accustomed to from first year calculus, which is d

dx(f ◦ g) = df
dg

dg
dx .

Let f : Rm → R and g : Rn → Rm then

d

dxi
(f ◦ g) =

m∑
l=1

∂f

∂gl

∂gl
∂xi

(2.20)

Multivariate Chain Rule

In addition, we recall from the last section, that the computation that every node in
the network performs (apart from the nodes in the input layer) is the following.

vij is the output of node j in layer iwhere f ij is the activation applied at this respective
node.

vij = f ij(zij) (2.21)

zij is the product sum (including bias bij) of node j in layer i. wijk is the weight
between node k from layer i− 1 and node j from layer i and ni−1 is the amount of
nodes in layer i− 1.

zij =
ni−1∑
k=0

wijkv
i−1
k (2.22)

Nodal Computation

Consider an ANN with m layers, here the 0th layer is the input layer and the mth

layer is the output layer. All layers in between are hidden. In order to compute
∂L
∂wkij

,

we expand expand using the chain rule.

∂L
∂wkij

= ∂L
∂vki

∂vki
∂zki

∂zki
∂wkij

(2.23)

2.4 Deep Learning 15

The partial derivate
∂zki
∂wkij

is computed as follows.

∂zki
∂wkij

= ∂

∂wkij

nk−1∑
l=0

wkilv
k−1
l

= vk−1
j

(2.24)

The partial derivate
∂vki
∂zki

is dependent on the chosen activation function. As an

example, if we were to choose the sigmoid function as the activation function, then

fki (zki) = S(zki) for which
∂vki
∂zki

(zki) = S(zki)(1− S(zki)).

The partial derivative
∂L
∂vki

is to be considered for two cases: For the output layer and

for the hidden layers. For a neuron in the output layer (i.e. when k = m), the partial

derivative
∂L
∂vki

can directly be computed, given the definition of the cost function L.

As an example, consider the mean squared error cost function L(ti, yi) = 1
2(ti − yi)2,

for which
∂L
∂vki

= ti − yi (if we consider the output layer to only have one neuron

vm1 = t1).

If vki is is a neuron in the hidden layer (i.e. 1 ≤ k < m) then we can consider the
cost function L to be a function of all product sums zk+1

i for i = 1, . . . , nk+1.

L = L
(
zk+1

1 (vk1 , vk2 , . . . , vknk), zk+1
2 (vk1 , vk2 , . . . , vknk), . . . , zk+1

nk+1(vk1 , vk2 , . . . , vknk)
)

Using this form we can apply the multivariate chain rule 2.20 to compute
∂L
∂vki

.

∂L
∂vki

=
nk+1∑
l=0

∂L
∂zk+1

l

∂zk+1
l

∂vki

=
nk+1∑
l=0

∂L
∂vk+1

l

∂vk+1
l

∂zk+1
l

wk+1
li

(2.25)

16 Chapter 2 Preliminaries

It can be observed that the gradients in layer k can only be computed knowing the
gradients of layer k + 1, hence the name backpropagation, as we propagate the

gradients backwards. The partial derivative
∂L
∂vki

can be summarised as follows.

∂L
∂wkij

=

vk−1
j

∂vki
∂zki

∂L
∂vki

, if k = m.

vk−1
j

∂vki
∂zki

∑nk+1
l=0

∂L
∂vk+1
l

∂vk+1
l

∂zk+1
l

wk+1
li , otherwise.

(2.26)

2.5 Deep Reinforcement Learning

Deep Reinforcement Learning is the field of study in which ANNs are applied to
RL. The first work demonstrating the use of ANNs in RL, dates back to the 1990s
[Tes95]. In this work, known as TD-Gammon, an ANN was used in conjunction with
Temporal-Difference (TD) learning (a type of RL algorithm) to play the game of
backgammon at the level of top human players.

The majority of work relating to RL, following the success of TD-Gammon, was
primarily focused on theoretical results with empirical work being confined to the
use of linear function approximators applied to small toy problems. However, this
changed with the success of the AlexNet paper [Kri+12] in 2012, which rekindled
an interest into the use of ANNs. It did not take long for RL researchers to realise
the applicability of ANNs in the context of RL, and in 2013 a research group called
DeepMind established the Deep-Q Network (DQN) [Mni+13], which was able to
learn a wide array of Atari games from raw RGB pixel data; Something which
had been impossible before the use of large non-linear function approximators. A
primary reason why ANNs blossomed in the 2010s, and not in the 1990s, is due to
the increase in computational power with the onset of GPUs.

It is to be stressed that ANNs do not mechanically change the nature of RL, yet
rather add an extension to how RL can be performed in practice. ANNs by nature are
universal function approximators by the universal approximation theorem [Hor91],
which states that an ANN (with a single hidden layer) can approximate continuous
functions on compact subsets of Rn. Hence the use of ANNs in RL is to approximate
some function; There are ways in which ANNs are used in the context of RL.

1. Approximate value functions: Storing the entries of a value function in a table
has the limitation of only being able to store a finite number of possible values
(due to memory limitations). Approximating value functions using ANNs
overcomes this issue. In the DQN paper, the action-value function Q∗(s, a)θ
was approximated via an ANN.

2.5 Deep Reinforcement Learning 17

2. Approximate the policy πθ: As seen before, one can directly paramaterize a
policy π through some function, and learn the parameters of this function via
policy gradient methods; Henceforth ANNs can be used to directly represent
the policy of an agent.

18 Chapter 2 Preliminaries

3Policy Gradients

3.1 Introduction

Policy gradients is a RL paradigm for learning a policy π. A common approach
for learning a policy π (as discussed in many introductory RL texts and courses)
is through the approximation of value functions V π(s) ≈ V w(s) and Qπ(s, a) ≈
Qw(s, a), by learning parameters w. From the construction of these value functions,
a policy π can be extracted as follows πw(s) = maxa∈AQw(s, a) (as discussed in the
previous chapter). However, instead of learning value functions, we can directly
parameterise a policy πθ = P [a|s, θ], for which the parameters θ can be learned via
policy gradient methods. The particular appealing reasons for doing so, are the
following.

1. Better convergence properties: Learning value functions can be time consum-
ing, as they usually require complete sweeps through the state space S. An
example are the generalised policy iteration methods, such as the policy iter-
ation and value iteration algorithms briefly mentioned in section 2.3. Using
policy gradient methods for learning the policy parameters is usually superior
in regards to convergence.

2. Applicability to high-dimensional and continuous action spaces: A problem
when learning a policy π derived from the action-value Qπ(s, a), is that it
requires a complete scan through the action set A, which is intractable in large
discrete or continuous action spaces, due to the curse of dimensionality. 1

Albeit the properties listed above deem to be advantageous, policy gradient methods
suffer from the following issues: Convergence to a local rather than a global optimum
solution, which value based approaches do not suffer from; Usually suffer from high
variance in estimating updates for the parameters θ for the parameterisation πθ.
However, as of writing, there is a growing interest in policy gradient methods
[Sch+15a; Pla+17; Sch+15b; Sch+17] due to their ability to learn relatively
quickly in continuous action spaces, which is intractable with the use of value base
methods.

1The curse of dimensionality refers to the problems difficulty increasing as a function of the number
of dimensions https://en.wikipedia.org/wiki/Curse_of_dimensionality

19

A stationary distribution µ of a Markov Chain remains unchanged as time progresses
i.e. µ(x|t = i) = µ(x|t = i + N) ∀ N ≥ 0 where i,N ∈ N. A policy π reduces
a Markov Decision Process to a Markov Chain defining the following stationary
distribution over the states s ∈ S, where s0 ∈ S is any initial state.

dπ(s) = lim
t→∞

P (st = s|s0, πθ) (3.1)

Stationary Distribution

The goal in policy gradient methods, is to find a parameterised policy πθ, with
parameters θ, that maximise either of the following utility functions, dependent on
the type of interaction the agent has with the environment,

J1(θ) = V π(s)

J2(θ) =
∑
s∈S

dπθ(s)V πθ(s) (3.2)

The utility function J1(θ) is used in the episodic environment setting, in which the
agent interacts with the environment by sampling a set {τi}i=1...N of terminal ex-
perience trajectories τ = (s0, a0, r0, s1, a1, r1, . . . , sTi−1, aTi−1, rTi−1, sTi). The utility
function J2(θ) on the other hand, is applicable in continuing environments i.e. where
T =∞. In the utility function J2(θ), dπθ(s) refers to the stationary distribution of
the Markov Chain induced by policy πθ as defined in definition 3.1; This can be
interpreted as the probability of being in a given state s ∈ S, if the policy πθ is
applied to navigate the Markov Decision Process indefinitely.

To state the objective formally, the goal is to find parameters θ such as to maximise
the expectation of the chosen utility function J(θ) (depending on a episodic or
continuing environment).

θ = max
θ

E[J(θ)] (3.3)

From the above equation it can be observed that the nature of the problem is an
optimisation problem, henceforth learning in this context is analogous to optimisa-
tion. When dealing with optimisation problems, an ideal method for finding suitable

20 Chapter 3 Policy Gradients

parameters θ is through gradient ascent (as the goal is to maximise the provided
utility function).

θ ← θ + α∇θJ(θ) (3.4)

Where ∇θJ(θ) = (∂J(θ)
∂θ1

, ∂J(θ)
∂θ2

, . . . , ∂J(θ)
∂θn

)T is the column vector of partial derivates
of the utility function J(θ) with respect to all parameters θ. However, the means
by which this gradient ∇θJ(θ) is computed, is not so obvious. An attempt that can
be made, without knowing the form of ∇θJ(θ) analytically, would be to apply the
methods of finite differences. For each k ∈ [1, n], the kth partial derivative of the
utility function J(θ) can be approximated by perturbing θ by an ε amount along the
kth dimension.

∂J(θ)
∂θk

= J(θ + εêk)− J(θ)
ε

(3.5)

Here the êk is the unit basis vector corresponding to the kth dimension. Al-
though being a simple and intuitive approach and working for arbitrary (even
non-differentiable) policies, this method is rather inefficient and suffers from noisy
estimates. Better approaches are showcased in the following sections.

3.2 Policy Gradient

∇θJ(θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)∇θπθ(a|s)

= Eπθ [Q
πθ(s, a)∇θ ln πθ(a|s)]

(3.6)

Policy Gradient Theorem

The problem of computing the gradient of the utility function ∇θJ(θ) analytically,
is the following: The policies parameters θ influence action selection and the dis-
tribution on states dπθ(s), both of which the utility function depend on. The effect
of the parameters θ on the action selection can be computed having knowledge of
the representation of the policy πθ, however the effect of the parameters θ on the
state distribution dπθ(s) is not straight forward, as this distribution is dependent
on the dynamics of the environment, which in a model-free setting are unknown.

3.2 Policy Gradient 21

The policy gradient theorem [Sut+00] (defined in definition 3.6), allows us to
analytically compute the gradient of the utility function ∇θJ(θ), without knowledge
of the effect that changes in policy parameters θ have on the state distribution dπθ(s).
The expectation term in definition 3.6 can be derived from the first line using the
following identity ∇θ ln(w) = 1

w∇θw.

∇θJ(θ) ∝
∑
s∈S

dπθ(s)
∑
a∈A

Qπθ(s, a)∇θπθ(a|s)

=
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a|s)Qπθ(s, a)∇θπθ(a|s)
πθ(a|s)

=
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a|s)Qπθ(s, a)∇θ ln πθ(a|s)

= Eπ[Qπθ(s, a)∇θ ln πθ(a|s)]

(3.7)

Eπ is a notational shorthand for Es∼dπθ ,a∼πθ , as discussed before, the actions and
states sampled are both dependent on the policy πθ. Outlined below is a proof for
the policy gradient theorem. We adopt the approach of deriving the expression
using J1(θ) = V π(s). The derivation using J2(θ) =

∑
s∈S d

πθ(s)V πθ(s) yields the
same result, however instead of being an expression of proportionality ∇θJ(θ) ∝∑
s∈S d

πθ(s)
∑
a∈AQ

πθ(s, a)∇θπθ(a|s) one rather arrives at an equality ∇θJ(θ) =∑
s∈S d

πθ(s)
∑
a∈AQ

πθ(s, a)∇θπθ(a|s) [SB+98]. The reason this does not make a
difference in implementation, is that any constant factor gets absorbed by the
learning rate α when performing gradient ascent. For simplicity we assume no
discounting γ = 1.

∇θV π(s) = ∇θ
(∑
a∈A

πθ(a|s)Qπθ(s, a)
)

=
∑
a∈A

(
∇θπθ(a|s)Qπθ(s, a) + πθ(a|s)∇θQπθ(s, a)

)
=
∑
a∈A

(
∇θπθ(a|s)Qπθ(s, a) + πθ(a|s)∇θ

(∑
s′∈S

p(s′|s, a)
[
r(s′, a, s) + V πθ(s′)

]))
=
∑
a∈A

(
∇θπθ(a|s)Qπθ(s, a) + πθ(a|s)

∑
s′∈S

p(s′|s, a)∇θV πθ(s′)
)

(3.8)

In the above derivation we end with a recursive formula, relating the gradient
∇θV π(s) to gradients ∇θV π(s′) where s′ are states succeeding state s. We unroll this

22 Chapter 3 Policy Gradients

recursive formula. To reduce the amount of mathematics required, and to simplify
the readability of the derivation, we make the following definition.

φ(s) =
∑
a∈A
∇θπθ(a|s)Qπθ(s, a) (3.9)

In addition, we define ρπθ(s → x, k) as the probability of transitioning from state
s to state x in k steps under policy πθ. For k = 0 the probability of transitioning
from state s to state x is 0 if these states are different and 1 if they are the same
ρπθ(s → x, 0) = δxs . When k = 1 we have ρπθ(s → x, 1) =

∑
a∈A πθ(a|s)p(x|s, a)

and by the Chapman-Kolmogorov equations 2 we have that for k = n+ 1 ρπθ(s→
x, n+ 1) =

∑
x′∈S ρ

πθ(s→ x′, n)ρπθ(x′ → x, 1).

∇θV π(s) =
∑
a∈A

(
∇θπθ(a|s)Qπθ(s, a) + πθ(a|s)

∑
s′∈S

p(s′|s, a)∇θV πθ(s′)
)

= φ(s) +
∑
a∈A

πθ(a|s)
∑
s′∈S

p(s′|s, a)∇θV πθ(s′)

= φ(s) +
∑
s′∈S

∑
a∈A

πθ(a|s)p(s′|s, a)∇θV πθ(s′)

= φ(s) +
∑
s′∈S

ρπθ(s→ s′, 1)∇θV πθ(s′)

= φ(s) +
∑
s′∈S

ρπθ(s→ s′, 1)[φ(s′) +
∑
s′′∈S

ρπθ(s′ → s′′, 1)∇θV πθ(s′′)]

= φ(s) +
∑
s′∈S

ρπθ(s→ s′, 1)φ(s′) +
∑
s′∈S

ρπθ(s→ s′, 1)
∑
s′′∈S

ρπθ(s′ → s′′, 1)∇θV πθ(s′′)

= φ(s) +
∑
s′∈S

ρπθ(s→ s′, 1)φ(s′) +
∑
s′′∈S

ρπθ(s→ s′′, 2)∇θV πθ(s′′)

= φ(s) +
∑
s′∈S

ρπθ(s→ s′, 1)φ(s′) +
∑
s′′∈S

ρπθ(s→ s′′, 2)φ(s′′) + . . .

+
∑
sk∈S

ρπθ(s→ sk, k)∇θV πθ(sk)

=
∑
x∈S

∞∑
k=0

ρπθ(s→ x, k)φ(x)

(3.10)

2https://proofwiki.org/wiki/Chapman-Kolmogorov_Equation

3.2 Policy Gradient 23

Define η(x) =
∞∑
k=0

ρπθ(s→ x, k), which is normalised given the stationary distribu-

tion dπθ(x) = η(x)∑
x∈S η(x) . Following from derivation 3.10.

∇θV π(s) =
∑
x∈S

∞∑
k=0

ρπθ(s→ x, k)φ(x)

=
∑
x∈S

η(x)φ(x)

=
(∑
x∈S

η(x)
)∑
x∈S

dπθ(x)φ(x)

∝
∑
x∈S

dπθ(x)φ(x)

=
∑
x∈S

dπθ(x)
∑
a∈A
∇θπθ(a|x)Qπθ(x, a)

(3.11)

3.3 Deterministic Policy Gradient

∇θJ(θ) =
∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s)ds

= Es∼ρµ [∇θµθ(s)∇aQµ(s, a)|a=µθ(s)]
(3.12)

Deterministic Policy Gradient

The previous section established how the policy gradient∇θJ(θ) could analytically be
calculated for stochastic policies πθ(a|s). The deterministic policy gradient [Sil+14],
outlined in definition 3.12, enables the means to compute the gradient ∇θJ(θ) for
deterministic policies a = µθ(s); The existence of this gradient relies on the following
regularity conditions: p(s′|s, a), ∇ap(s′|s, a), µθ(s), ∇θµθ(s), r(s, a), ∇ar(s, a) and
p0(s) are continuous in all parameters. Here p(s′|s, a) is the transition density
function, µθ(s) is a deterministic policy, r(s, a) is a reward function and p1(s) is the
initial density function over states s ∈ S.

24 Chapter 3 Policy Gradients

The utility function J(θ) from which the gradient 3.12 is derived, is defined by the
following equation.

J(θ) =
∫
S
ρµθ(s)r(s, µθ(s))ds

= Es∼ρµθ [ρµθ(s)r(s, µθ(s))]
(3.13)

Here ρµ(s′) =
∫
S
∑∞
k=1 γ

k−1ρ0(s)ρµ(s→ s′, k)ds is the discounted state distribution
where ρµ(s → s′, k) (as in the previous section) is the probability of transitioning
from state s to state s′ within k steps.

A computational advantage the deterministic policy gradient has over the stochastic
policy gradient, is that the deterministic policy gradient integrates over the state
space, whereas the stochastic policy gradient integrates over both the state and
action space. The authors of the deterministic policy gradient paper establish that
the deterministic policy gradient is a limiting case of the stochastic policy gradient
with the policy’s variance tending to 0; In addition they derive an off-policy actor-
critic algorithm that is able to outperform the stochastic policy gradient approach in
high-dimensional continuous action spaces. For a proof of the deterministic policy
gradient, see the appendix 3 of the paper. This proof is similar to the one outlined in
the previous section.

3.4 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients (DDPG) [Lil+15] is an actor-critic, model-
free RL algorithm based on the deterministic policy gradient 3.12 outlined in the
previous section. The key contribution of this paper was to combine the deterministic
policy gradient with the Deep-Q Network [Mni+13], thus extending the success of
the Deep-Q Network to high-dimensional continuous action spaces, as the Deep-Q
Network was only applicable to discrete action spaces.

In the DDPG algorithm, both the actor and critic are represented by neural networks
(as a reminder, the actor learns the policy and the critic learns the associated action-
value function, which guides the learning of the policy). In order to avoid instability
in training the networks, the following additions were included by the authors of
the algorithm.

3For some strange reason the appendix is not attached to the open access paper, however it is available
at the following link http://proceedings.mlr.press/v32/silver14-supp.pdf

3.4 Deep Deterministic Policy Gradients 25

Fig. 3.1: Outline of the DDPG algorithm, extracted from the paper [Lil+15]

1. Experience replay: When training neural networks, it is assumed that the
data that is fed into the network for training is independently and identically
distributed (i.i.d). However, the data sampled by a policy π from an envi-
ronment is not i.i.d due to the sequential nature of state transitions. The
Deep-Q Network paper addressed this issue by constructing a replay buffer R
containing sampled tuples (st, at, rt, st+1) from which the network is trained.
Sampling from this replay buffer R uniformly, enables the i.i.d assumption, as
samples are now uncorrelated.

2. Soft target updates: As observed by the Deep-Q Network paper, directly
implementing Q-Learning [WD92] with neural networks resulted in training
instabilities. To overcome this issue, the authors created two copies of the
neural network that learned the Q-Values, where the weights of the one were
frozen for a certain period of time, before being updated with a copy of the
weights of the other neural network. A similar approach was adopted by the
DDPQ paper, however as this is an actor-critic model, there are a set of four
neural networks: The actor network µ(s|θµ), the target actor network µ′(s|θµ′),
the critic network Q(s, a|θQ) and the target critic network Q′(s, a|θQ′). Instead
of freezing the target networks and copying the weights after a certain period of

26 Chapter 3 Policy Gradients

time, a soft update approach was used, in which the target network parameters
are updates as follows.

θQ
′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

(3.14)

This update is performed after every iteration of gradient ascent on the main
network’s parameters with τ << 1.

3. Batch normalization [IS15]: This DL technique ensures that the output of
a layer within a network has a mean activation output of 0 and a standard
deviation of 1. This has found to reduce training times and network instabilities
in practice.

As DDPG is an off-policy method, exploration is performed by a behavioural policy,
instead of the target policy; This exploration is achieved by adding noise N to the
actor policy µ′(st) = µ(st|θµt) +N . Figure 3.1 outlines the DDPQ algorithm.

3.4 Deep Deterministic Policy Gradients 27

4Robotic Grasping

4.1 Introduction

The robotic grasping problem considered in this thesis is the following: A 2 degree
of freedom (DOF) robotic arm with a gripper is located on a 2 dimensional surface
with the objective of having to locate an object, grasp it and move it to a variable
goal position. With regards to RL formalism, the environment (in its original form)
has the following components in its MDP representation.

The Markov Decision Process describing the robotic grasping problem has the fol-
lowing components.

1. S: A 7 dimensional state set S =< R1, R2, G,Gx, Gy, Bx, By >.

2. A: A 3 dimensional action set A =< ∆R1,∆R2,∆G >.

3. P : A deterministic transition distribution P [St+1 = s′|St = s,At = a] ∈ {0, 1}.

4. R : A sparse reward function rg(s, a) = −[fg(s) = 0].

5. µ: An initial state distribution (Gx, Gy) ∼ U , (Bx, By) ∼ U and (R1, R2) ∼ U .

Original MDP

R1 is the rotation in radians of the lower motor (i.e. of the lower arm). R2 is the
rotation in radians of the upper motor (i.e. the upper arm). G is a binary field
indicating whether the gripper is open or closed. (Gx, Gy) are the coordinates of
the goal and (Bx, By) are the coordinates of the object. ∆R1 is the rotation in
radians applied to the lower motor (i.e. of the lower arm). ∆R2 is the rotation
in radians applied to the upper motor (i.e. the upper arm). ∆G is a binary field
indicating wether to close or open the gripper. rg(s, a) is a reward function defined
in a multi-goal RL setting with g ∈ S (i.e. the goal is an element from the state set).
The predicate fg(s) =

[
‖(Gx, Gy)T − (Bx, By)T ‖2 < ε

]
where ε is some tolerance

29

threshold. 1 U represents the uniform distribution over the valid domain of possible
values that the respective random variables can adopt.

The problem of finding a policy for the MDP outlined above turned out to be
too ambitious, given the tight time constraints of this thesis and hence various
adjustments were made. 2 Initially the ideas of the Hindsight Experience Replay
(HER) paper [And+17] were implemented to tackle the sparse reward nature of the
problem, however due to no convergence in the preliminary experiments, the sparse
reward was replaced for a shaped reward [Ng+99] of the following form.

r(s, a, s′) = f(θ1, θ2, t, h, c) +

λ1‖l −Bl‖p1
2 + λ2‖θ −Bθ‖p2

2 , if h = 0.

λ3‖l −Gl‖p3
2 , if h = 1.

(4.1)

h ∈ 0, 1 is a binary field indicating whether or not the robot has grasped the object,
l is the location of the gripper, θ is the relative angle between the gripper and the
object, Bl is the object location, Bθ is the absolute object angle and Gl is the goal
location. λ1, λ2, λ3, p1, p2, p3 are tuneable hyper-parameters. f is a function taking
in as arguments θ1 and θ2 (the coordinates in radians of the motors), t is the passed
time-steps of the simulation and c ∈ 0, 1 a binary field indicating whether or not a
collision between the arm and object has taken place. The objective of the function
f is to enforce a continual supply of reward/punishment to ensure object completion
and a balance between the two latter terms. 3

Designing a shaped reward function is a non-trivial task and usually requires domain-
specific knowledge and RL expertise. An example is the work of [Pop+17], where
they engineered a cost function consisting of five complicated weighted terms to
enable a robot arm to learn how to grasp and stack a brick on top of another
brick. Often times reward functions lead to undesired behaviour, due to the reward
function not accurately representing the task objective on hand [Amo+16a]. This
phenomena was observed on multiple occasions (for different hyper-parameters
values and function structure f), with some examples being.

1. The robot would swing its arm against the object to intentionally stop the
simulation

1Here predicate refers to a logical valued function that is either true or false. In this context true
implies a value of 1 and false a value 0.

2These adjustments were made to simplify the problem to be able to deliver a working model within
the restricted time limit of the thesis.

3That was the idea in theory and turned out to be non-trivial to construct.

30 Chapter 4 Robotic Grasping

2. The robot would swing its arm around, adjusting its motors so as not to collide
with the object

3. The robot would close it’s gripper without performing any movement with the
motors

These outcomes are a result of the robot learning that performing these undesired
behaviours, it can maximise cumulative reward. This showcases the importance of
constructing a shaped reward function that actually represents the objective on hand,
rather than appearing to represent the objective on hand. Multiple attempts were
made at designing a reward function that captures the true nature of the problem,
however due to repeated failure and tight time restrictions, it was decided to rather
decompose the original MDPM into two distinct MDPsM1 andM2, for which both
valid reward functions could be established. The union of the MDPSM1

⋃
M2 =M

is a representation of the original MDP. 4 MDPM1 represents the problem of finding
and grasping the object and MDPM2 represents the problem of moving the object
to the predefined goal position. These MDPs are defined as follows.

4.1.1 Simplified Problem using MDP decomposition

The Markov Decision Process describing the robotic grasping problem has the fol-
lowing components.

1. S: A 4 dimensional state set S =< R1, R2, Bx, By >.

2. A: A 2 dimensional action set A =< ∆R1,∆R2 >.

3. P : A deterministic transition distribution P [St+1 = s′|St = s,At = a] ∈ {0, 1}.

4. R : A shaped reward function r(s, a, s′) = −
[
α‖B − L‖2 + βΣR2

i

]
5. µ: An initial state distribution (Bx, By) ∼ U∗, R0 = 0 and R1 = π.

MDP 1

All symbols were defined in the previous section. The reward function consists of
two terms: −α‖B−L‖2 ensures that the L2 norm between the object and the gripper
location (represented by L) gets minimised and −βΣR2

i (adopted from the reacher
gym environment [Bro+16]) is included to penalise large movements of the motors,

4Union in this context refers to the problem represented by the original MDP M being the same as
the problem represented by the concatenation of MDPs M1 and M2.

4.1 Introduction 31

ensuring smoother control. α and β are hyper-parameters ensuring proper relative
scaling of the terms. 5.

The initial state distribution µ ensures that the arm always starts in the same position.
The arm can grab the object if R̂1 < r < R̂2, where r is the distance of the object from
the origin (Ox, Oy) and R̂1 is the lower bound and R̂2 is the upper bound (bounds
defining boarders within the object is reachable). To simply the exploration and to
ensure the defined reward function works, it was decided to spawn the object B
within a subregion of the donut defined by R̂1 < r < R̂2. This subregion was defined
by putting bounds on the angle θ (the angle the object makes in reference to the
origin), which was deemed to be θ ∈ (π − α, π + α) 6. The statement (Bx, By) ∼ U∗
(i.e. sampling the initial position of the object) is formalised as follows (where
(Ox, Oy) are the coordinates of the origin)7

Bx = Ox + r cos θ

By = Oy − r sin θ

r ∼ U(R̂1, R̂2)

θ ∼ U(π − α, π + α)

(4.2)

To further simplify the problem at hand, it was decided to have the robot automat-
ically close its gripper if the object is within reachable range i.e. if the predicate[
‖G − L‖2 < ε

]
(where ε is some tolerance threshold) evaluates to true, then the

gripper closes.

5It was found that α = 1
150 and β = 1

5 worked
6For the experiments α = π

6
7Note the minus sign in the expression for By, this is due to the coordinate system used in computer

graphics being different to the conventional coordinate system. This is briefly discussed in the next
section.

32 Chapter 4 Robotic Grasping

The Markov Decision Process describing the robotic moving problem has the follow-
ing components.

1. S: A 4 dimensional state set S =< R1, R2, Bx, By >.

2. A: A 2 dimensional action set A =< ∆R1,∆R2 >.

3. P : A deterministic transition distribution P [St+1 = s′|St = s,At = a] ∈ {0, 1}.

4. R : A shaped reward function r(s, a, s′) = −
[
α‖B −G‖2 + βΣR2

i

]
5. µ: An initial state distribution (Gx, Gy) ∼ U , (R1, R2) ∼ U and (Bx, By) =

(Lx, Ly).

MDP 2

The MDP defined above is similar to the previous one, it contains a 4−dimensional
state space and a 2−dimensional action space (however now the last two elements
in the state space describe the location of the goal, rather than the location of the
object). The transition distribution and the reward function remain the same. A
difference can be observed in the initial state distribution: The goal location is
sampled uniformly from the space of all possible goals (Gx, Gy) ∼ U , as discussed
before this is any location that is distance r away from the origin (Ox, Oy) with
bounds R̂1 < r < R̂2. However, in contrast to before, we assume the goal location
(Gx, Gy) to take on any possible value in the space of all reachable coordinates and
hence θ ∈ [0, 2π). This is formalised as follows.

Gx = Ox + r cos θ

Gy = Oy − r sin θ

r ∼ U(R̂1, R̂2)

θ ∼ U(0, 2π)

(4.3)

In this MDP, it is given that the arm can be in any initial configuration and hence
(R1, R2) ∼ U which is formalised as.

R1 ∼ U(0, 2π)

R2 ∼ U(0, 2π)
(4.4)

In addition, in this MDP the object is attached to the robot (i.e the robot is assumed
to already have grasped the object).

Bx = Lx

By = By
(4.5)

4.1 Introduction 33

These equations continue to be satisfied throughout time-steps t > 0 (and not just
for t = 0).

The problem that MDPM2 is describing is more alluring than that of MPDM1, as
the robot has to learn how to move the object from any starting position to any
ending position within the vicinity of legal coordinates, instead of starting in a fixed
position and having to learn how to move to a location in a subregion of legal
coordinates.

4.2 Simulation

4.2.1 Introduction

Simulations provide imitations of a physical phenomenon in virtual environments.
Simulations play a vital part in RL, as they provide the primary mechanism in which
RL algorithms are trained and tested. The most established simulation environments
(in the context of RL) are the ones developed by OpenAI, known as the gym [Bro+16].
The gym is a collection of open-source game environments that share a common
interface, enabling the development of general RL algorithms. Two fundamental
contributions that OpenAI gym bring forward, are the following.

1. Delivering a diverse set of environments that are intuitive to use. This is
analogous to big datasets (such as the imageNet [Den+09]) in supervised
learning, that have driven large progress.

2. Providing standardisation for comparing RL algorithms in the literature. Slight
changes in reward functions, action spaces or environment dynamics can
dramatically alter the difficulty of a given task, thus making it difficult to
compare various RL algorithms if the environments are not consistent.

In the context of RL, simulations can be used in conjunction with the physical world.
The agent would first be trained in the simulated environment, before being placed
in the physical environment for deployment or further training. In this instance, the
simulated environment would be modelled after the physical environment. There
are two difficulties in doing so.

1. Expertise: Being given a physical environment, one has to handcraft a replica
in a virtual setting. Such crafting is usually non-trivial as it requires domain
specific knowledge. Before training any RL model, one has to create these
environments opposed to using something like gym, which makes this a tedious

34 Chapter 4 Robotic Grasping

process. A potential downfall, is that the replicated virtual environment might
not capture the true nature of the physical world and hence becomes a bad
model for training. This brings us to the next point.

2. Expense: In order to develop good models of the physical world, many times
research groups resort to using expensive physics engines that capture the
dynamics of the physical world. A popular example is the Multi-Joint dynamics
with Contact (MuJoCo) physics engine [Tod+12] which has been used in a
variety of RL related research projects [Lil+15; Dua+16; Lev+16; Sch+15b].
Being a powerful tool, the price for the engine ranges between 500 to 12000
dollars (depending on the license type), which is a steep financial burden for
anyone who wants to perform RL research related to robotics.

A custom simulator was built for the robotic grasp problem (outlined in the previous
section), that tackles the two problems mentioned above: The simulator is modest,
in that it does not require an extensive array of expertise. It is low cost, as it was built
using an open-source game engine without the addition of complicated dynamics
(hence not requiring a physics engine). This showcases that RL robotics research can
be performed without the need of expensive proprietary software.

The simulator consists of three main components: The environment (which is
fundamental to any RL simulator), the arm and the object which both form part of
the environment. The following subsections outline some of the construction that
was used in the development of the virtual robotic arm. All development was carried
out in a modest open-source python game engine called PyGame 8, with the source
code attached in the appendix.

On a closing note: The coordinate system used in computer graphics differs from the
standard 2D coordinate system that one usually works with. The conventional 2D
coordinate system is the right-handed Cartesian coordinate system, where the x-axis
goes to the right and the y-axis goes to the top. In computer graphics however, the
x-axis goes to the right and the y-axis goes to the bottom. The following subsections
take this into account, hence the importance of mentioning this. The changes with
such a coordinate system is that the origin is now the top left corner; increasing
the y coordinate of an object will translate the object downwards; and the counter
clockwise rotation R(θ) through angle θ about the origin now performs a clockwise
rotation.

4.2 Simulation 35

Fig. 4.1: Overview of the robotic arm, with all the local coordinate systems (SL)i, hinge
points (Hx, Hy)i and elevation angles (θL)i.

4.2.2 The Arm

The arm is comprised of four main components: The lower arm, the upper arm and
the gripper, where the gripper is further decomposed into a left and right gripper
part. All components live in a global coordinate system (SG), with each having their
own local coordinate system (SL)i. The global coordinate system (SG) is the main
coordinate system, in that each object is placed within this coordinate system for
rendering purposes; However it also enables vital functionality such as checking
for collision and rotating objects. The local coordinate systems (SL)i provide a
mechanism of bookkeeping for each individual part, that takes care of simplifying
the calculations involving rotations. Each arm object has a rotation (θL)i described
in the local coordinate system (SL)i and a hinge point (Hx, Hy)i described in the
global coordinate system (SG).

8https://en.wikipedia.org/wiki/Pygame

36 Chapter 4 Robotic Grasping

The lower arm lives in a local coordinate system (SL)1 with its origin centred at
location (Ox, Oy) in the global coordinate system (SG). The upper arm lives in the
local coordinate system (SL)2 which is rotated by (θL)1 and centred at (Hx, Hy)1.
The gripper (encapsulating both the left and right gripper) lives in a local coordinate
system (SL)3 that is rotated by (θL)1 + (θL)2 and centred at (Hx, Hy)2. This is
visually portrayed in figure 4.1.

All the arm components are derived from the same class 9, which provides common
shared functionality to all components. Each arm object is characterised by 8
variables.

1. Coordinates (x, y) which are in reference to the global coordinate system (SG).
These points are dynamically calculated after each update to the arm.

2. An offset Of which is a length describing how much to translate the object by,
as to move it to the correct hinge point.

3. A scale S which is the length of the arm object

4. A global angle Ag which characterises the rotation of the arm object in the
global coordinate system (SG).

5. A local source angle As which characterises the current rotation of the arm
object in the local coordinate system (SL)i.

6. A local destination angle Ad which characterises the destination rotation (i.e
the goal angle to rotate to) of the arm object in the local coordinate system
(SL)i.

7. A rate of change dθ encoding how quickly the arm object is to rotate.

The main purpose of the class is to enable a mechanism for rotating and translating
the arm objects. Whilst the source angle As is not equal to the destination angle Ad,
the source angle is updated as follows As ← As + dθ with rotation transformation
4.6 being applied 10.

R(θ) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.6)

9In Object Orientated Programming (OOP) a class provides a blueprint for an object. The object is
said to be instantiated from a class, if a copy is made.

10This transformation is performed in the global coordinate system (SG)

4.2 Simulation 37

After each rotation, new coordinates (x, y) are computed for each arm part. The new
coordinates for the lower arm are computed as follows.

x = Ox + cos(Ag1)Of1

y = Oy − sin(Ag1)Of1
(4.7)

The updated coordinates for the upper arm are calculated as follows.

x = Ox + cos(Ag2)Of2 + S1cos(Ag1)

y = Oy − sin(Ag2)Of2 − S1sin(Ag1)
(4.8)

The updated coordinates for the gripper parts are calculated as follows.

x = Ox + cos(Ag3)Of3 + S1cos(Ag1) + S2cos(Ag2)

y = Oy − sin(Ag3)Of3 − S1sin(Ag1)− S2sin(Ag2)
(4.9)

4.2.3 The Gripper

As mentioned before, the gripper is comprised of two dynamic parts, the left and right
gripper part. The same rotations and translations as before are applied, however an
additional translation scheme is introduced to move each gripper part apart from
each other and to the desired location on the upper arm. If this additional translation
scheme would not be applied, both gripper parts would be fixed at the hinge point
of the upper arm. We introduce a horizontal offset ∆x and a vertical offset ∆y that
translates the left gripper part ∆x units to the left and the right gripper part ∆x
units to the right and both parts ∆y upwards (in regards to the local coordinate
system in which the gripper parts are situated). See figure 4.2 for a visual depiction

38 Chapter 4 Robotic Grasping

Fig. 4.2: Overview of the robotic gripper, portraying how the left gripper is translated from
the hinge point of the upper arm. A similar translation is applied for the right
gripper part.

of this translation process. These offsets are appended to the coordinates of the left
gripper part (xL, yL) and right gripper part (xR, yR) as follows.

xL ← cos(As1 +As2 + α)r

yL ← −sin(As1 +As2 + α)r

xR ← cos(As1 +As2 − α)r

yR ← −sin(As1 +As2 − α)r

α = tan−1(∆y
∆x)

r =
√

(∆x)2 + (∆y)2

(4.10)

The main functionality of the gripper is to grasp the object. In the initial construction
of the simulator, it was attempted to include laws of physics to give realistic contact
collision between the gripper (including the arm) and the object. This turned out to
be a non-trivial task as one would have to take into account (to name a few): The

4.2 Simulation 39

friction of the surface, the angular momentum of the object and material properties
of the robot. After much research (reading about physics, discussing with colleagues,
reaching out to physics stack exchange and designing code), it was decided to adopt
a simpler approach to checking whether or not the object had been grasped; After
all, every model is wrong (including the more complicated one with realistic physics)
and some are useful.

In order to check if the object is in a valid grasping position, a circular region of
radius T1 (referred to as the intra tolerance) displaced by an offset of T2 (referred
to as the inter tolerance) from the top of the upper arm, was constructed. If the
object falls within this circle, it is considered graspable. The circle centre coordinates
(xE , yE) are calculated as follows.

xE = x2 + (S2
2 + T2 + ro)cos(As1 +As2)

yE = y2 − (S2
2 + T2 + ro)sin(As1 +As2)

(4.11)

In these equations, (x2, y2) are the coordinates of the upper arm, S2 is the length of
the upper arm, ro is the radius of the object and As1 and As2 are the source angles
of the lower and upper arm respectively. If the robot is issued a command to close
the gripper and the following predicate holds true

[√
(xB − xE)2 + (yB − yE)2 < T1

]
(4.12)

then the object is considered to be grasped and is attached to the upper arm (here
(xB, yB) are the coordinates of the object).

4.3 Physical Development

A robotic arm with a grasping hand was constructed out of various materials. The
robot itself was constructed from a robotics kit called the Mindtorms NXT 11. The
robot arm is situated on top of a wooden board, that provides support and forms
the region for the object and goals. As per the problem description 4.1, this robot is
a 2 DOF arm: It has one motor controlling the lower arm and another motor that
rotates the upper arm. The third motor is connected to a worm drive that is able

11https://en.wikipedia.org/wiki/Lego _Mindstorms

40 Chapter 4 Robotic Grasping

to open and close the grasping hand. The motors used are all servo motors, which
allow for precise control of angular position via sensory position feedback; Knowing
the rotation of the motors is a requirement described in the problem definition of
the MDPs. The motors are controlled via a computer known as the NXT. The NXT
is a modest 32-bit micro controller with 64Kb of RAM and 256KB of flash memory.
The NXT receives which commands to issue to the motors from a main computer
running the simulation models, via a USB connection. The communication between
the NXT and the main computer was established via the control library nxt-python
12 coupled with the communication library pyusb 13.

Adjustments to the simulator described in the previous section had to be made, such
that the robot and simulator coincide: Firstly, the rotations in the simulator (which
are in radians) had to be mapped to the rotations applied to the physical motors
(which are in degrees).

θD = α
θR
2πGRID (4.13)

θD is the output rotation in degrees and θR is the input rotation in radians. GR = 7 is
the gear ratio: The number of turns the driven gear makes relative to the driver gear.
ID = 360 is one rotation in degrees. Here α = 0.99 is a hyper-parameter, which was
found via trial and error. This parameter takes into account various factors of the
physical environment, which would otherwise hinder the mapping from the virtual
to the physical space from being exact. Secondly, the dimensions of the arm parts
used in simulation had to relatively align with the scale dimensions of the arm parts
of the physical robot. In order to achieve this, the physical robot was rebuilt in a
Computer-Aided Design (CAD) software known as LDD 14. Lastly, the grasp circle
(outlined in subsection 4.2.3) was deemed to have a radius of T1 = 20mm and an
offset of T2 = 15mm.

4.4 DDPG Implementation

The DDPG implementation was tacking from a Github repository 15 and modified to
the problem on hand. All implementation was done using the PyTorch 16 library. The
neural networks used for the actor and critic were composed of three layers. Data
normalisation was applied to avoid numeric instabilities during training. Neural

12https://github.com/eelviny/nxt-python
13https://github.com/pyusb/pyusb
14https://en.wikipedia.org/wiki/Lego _Digital _Designer
15https://github.com/vy007vikas/PyTorch-ActorCriticRL
16https://pytorch.org

4.4 DDPG Implementation 41

weights were initialised from a uniform distribution. For training the Adam optimizer
[KB14] was used with a learning rate of η = 0.001 and a mini-batch size of 128.
The following hyper parameters were used as outlined in the DDPG algorithm 3.1:
τ = 0.001 and γ = 0.99.

To ensure adequate exploration the following scheme was adopted: With 0.3 the
same exploration as adopted as in the DDPG paper was performed, sampling corre-
lated noise from the Ornstein-Uhlenbeck process [UO30] and adding it to the target
policy. With the remaining 0.7 probability an action was uniformly sampled from the
hypercube of possible actions; This ensured adequate exploration.

4.5 Experiments and Results

This section outlines the experiments conducted, in benchmarking the effectiveness
of training policies π1 and π2 (respectively associated with MDPs M1 and M2

described in subsection 4.1.1) in simulation and applying it to the physical robot.

4.5.1 Training

All training was conducted on a server consisting of 2vCPUs with 4Gb of memory.
This server was hosted on Digital Ocean 17 and accessed remotely using the terminal
(for issuing commands) and Cyberduck 18 (for file transfer).

A main training and testing class was created. This class could delegate the task
of training the policies πi for each MDP Mi and combine these policies to act
in the overall MDP M (i.e. the original problem description). For both policies,
training was conducted using 10000 episodes, where each episode consisted of 30
time steps.

As performed in RL literature, the total cumulative reward per episode (analogous
to training accuracy in supervised learning) was recorded over the various training
episodes. The total reward over episodes is portrayed in figure 4.3 for both policies
π1 and π2. It can be observed, that the policies learn relatively quickly, with both
reaching a total reward score of approximately −10 after 500 episodes. 19

17https://en.wikipedia.org/wiki/DigitalOcean
18https://en.wikipedia.org/wiki/Cyberduck
19The figure was clipped to have a domain of 2000 episodes, rather than 10000, as results did not vary

over the extended interval.

42 Chapter 4 Robotic Grasping

Fig. 4.3: Training results of of policies for the MDPs described in section 4.1.1

4.5.2 Testing

To validate the effectiveness of the policies learned, they were first benchmarked
in the simulator. For testing purposes 1000 trials were run. In each trial the object
was instantiated with a random location (Bx, By) ∼ U∗ with the arm joints set
to default positions R1 = 0 and R2 = π. The goal coordinates were also set to a
random coordinate (Gx, Gy) ∼ U . See subsection 4.1.1 for an explanation as to
how these coordinates are generated. In these preliminary experiments, 185 of the
episodes failed i.e. the robot was not able to grab the object and move it to the
goal location; All the other attempts were successful. To define the goodness of
success, the displacement of the final object position in reference to the attempted
goal position was measured. For the successful attempts, the mean displacement
was 14.73px with a standard deviation of 10.04px. This showcases that in simulation,
the robot is able to get the object to the goal position with good precision (given
that the reachable radius is 280px), however this precision is rather variable.

For the experiments in the physical environment, the object coordinate was fixed
to be (Ox − 180px, Oy) for every trial. The main reason for this, is that it simplified
the testing procedure. As physical tests are cumbersome to run, a small sample of
7 trials was conducted. Physical tests were cumbersome to run, primarily because
the physical environment had to manually be reset for every trial, in contrast to the

4.5 Experiments and Results 43

Fig. 4.4: The goal coordinates that were used in the physical experiments.

virtual environment which could automatically reset itself. The goal coordinates
(Gx, Gy) were manually chosen in a way, as to cover most of the legal coordinate
space. See figure x that portrays where all these points coordinates are located, in
reference to the robot. These coordinates, alongside the displacements of the end
object position to the goal position in the physical and virtual setting are recorded
in table 4.1. In order to check for correlation between the physical and virtual
displacements, a scatter plot was generated, which is portrayed in figure 4.5. It
can be observed that there is a linear relationship between the physical and virtual
displacements. This indicates that the error made in the physical environment is
due to the same reason as in the virtual environment, and not that the virtual model
constructed misrepresents the problem on hand. This showcases that with modest
expertise and no expense, a simulation for the robotic grasping problem can be
constructed, that encompasses all learning, with the learned policies being applicable
in the physical environment (without additional fine tuning).

44 Chapter 4 Robotic Grasping

Fig. 4.5: Scatter plot of the virtual displacements against the physical displacements, where
the displacement is the difference between the final object position and the goal
position.

goal coordinates physical offset (cm) virtual offset (px)

(258, 258) 0.5 4
(400, 300) 5 19
(470, 329) 2.5 17
(660, 400) 4 19
(541, 541) 4 24
(400, 550) 3 12
(293, 506) 1 11

Tab. 4.1: Attempted goal coordinates alongside recorded offsets

4.5 Experiments and Results 45

5Conclusion

In this work the problem of applying Deep Reinforcement Learning to the problem
of robotic grasping in physical environments was tackled through the use of a self
built simulator, avoiding proprietary expensive simulation and physics engines. The
experiments performed showcase that it is possible to learn meaningful behaviour
in a self built simulator. This motivates the idea that RL applied to robotics can be
performed without the need of expensive software.

The robotic grasping problem was initially attempted using a sparse binary reward,
by implementing the Hindsight Experience Replay (HER) algorithm [And+17],
without any success. Reasons for no convergence could have been due to the neural
networks not being deep enough, errors in the implementation of the algorithm or a
lack of computational power. Moving to a shaped reward setting proved difficult,
as a function encoding the objective on hand could not be found. Decomposing the
robot grasp problem into two sub problems solved the problem: First learn a policy
that is able to find the object, then learn another policy that is able to move the
object to the desired goal location.

Future work would focus on developing a generic simulator that can be customised
to personal projects: Defining the robot’s abilities and dimensions, inputing the
reward function to be used and setting certain physical properties that should be
incorporated in simulation.

47

Bibliography

[Amo+16a] Dario Amodei, Chris Olah, Jacob Steinhardt, et al. „Concrete problems in AI
safety“. In: arXiv preprint arXiv:1606.06565 (2016) (cit. on p. 30).

[Amo+16b] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, et al. „Deep
speech 2: End-to-end speech recognition in english and mandarin“. In: Interna-
tional Conference on Machine Learning. 2016, pp. 173–182 (cit. on p. 11).

[And+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, et al. „Hindsight experience
replay“. In: Advances in Neural Information Processing Systems. 2017, pp. 5048–
5058 (cit. on pp. 30, 47).

[Bah+14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. „Neural machine
translation by jointly learning to align and translate“. In: arXiv preprint arXiv:1409.0473
(2014) (cit. on p. 11).

[Bro+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, et al. „Openai gym“. In:
arXiv preprint arXiv:1606.01540 (2016) (cit. on pp. 31, 34).

[Den+09] Jia Deng, Wei Dong, Richard Socher, et al. „Imagenet: A large-scale hierarchical
image database“. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. Ieee. 2009, pp. 248–255 (cit. on pp. 12, 34).

[Dua+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. „Bench-
marking deep reinforcement learning for continuous control“. In: International
Conference on Machine Learning. 2016, pp. 1329–1338 (cit. on pp. 3, 35).

[Gro13] Stephen Grossberg. „Recurrent neural networks“. In: Scholarpedia 8.2 (2013),
p. 1888 (cit. on p. 12).

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Deep residual
learning for image recognition“. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 12).

[HM95] Jun Han and Claudio Moraga. „The influence of the sigmoid function parame-
ters on the speed of backpropagation learning“. In: International Workshop on
Artificial Neural Networks. Springer. 1995, pp. 195–201 (cit. on p. 13).

[Hoc+01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
2001 (cit. on p. 13).

[Hor91] Kurt Hornik. „Approximation capabilities of multilayer feedforward networks“.
In: Neural networks 4.2 (1991), pp. 251–257 (cit. on p. 17).

49

[IS15] Sergey Ioffe and Christian Szegedy. „Batch normalization: Accelerating deep
network training by reducing internal covariate shift“. In: arXiv preprint
arXiv:1502.03167 (2015) (cit. on p. 27).

[Kak02] Sham M Kakade. „A natural policy gradient“. In: Advances in neural information
processing systems. 2002, pp. 1531–1538 (cit. on p. 7).

[KB14] Diederik P Kingma and Jimmy Ba. „Adam: A method for stochastic optimiza-
tion“. In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 42).

[Kri+12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. „Imagenet classification
with deep convolutional neural networks“. In: Advances in neural information
processing systems. 2012, pp. 1097–1105 (cit. on pp. 12, 13, 17).

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. „Gradient-based
learning applied to document recognition“. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324 (cit. on p. 12).

[Lev+16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. „End-to-end
training of deep visuomotor policies“. In: The Journal of Machine Learning
Research 17.1 (2016), pp. 1334–1373 (cit. on pp. 3, 35).

[Lil+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, et al. „Continuous
control with deep reinforcement learning“. In: arXiv preprint arXiv:1509.02971
(2015) (cit. on pp. 3, 8, 25, 26, 35).

[Mni+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. „Playing atari with
deep reinforcement learning“. In: arXiv preprint arXiv:1312.5602 (2013) (cit.
on pp. 17, 25).

[Ng+99] Andrew Y Ng, Daishi Harada, and Stuart Russell. „Policy invariance under
reward transformations: Theory and application to reward shaping“. In: ICML.
Vol. 99. 1999, pp. 278–287 (cit. on p. 30).

[Pla+17] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, et al. „Parameter space
noise for exploration“. In: arXiv preprint arXiv:1706.01905 (2017) (cit. on
p. 19).

[Pop+17] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, et al. „Data-efficient deep rein-
forcement learning for dexterous manipulation“. In: arXiv preprint arXiv:1704.03073
(2017) (cit. on p. 30).

[Ren+15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. „Faster r-cnn: Towards
real-time object detection with region proposal networks“. In: Advances in
neural information processing systems. 2015, pp. 91–99 (cit. on p. 12).

[SB+98] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduc-
tion. MIT press, 1998 (cit. on pp. 2, 8, 11, 22).

[Sch+15a] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. „High-dimensional continuous control using generalized advantage
estimation“. In: arXiv preprint arXiv:1506.02438 (2015) (cit. on p. 19).

[Sch+15b] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. „Trust region policy optimization“. In: International Conference on
Machine Learning. 2015, pp. 1889–1897 (cit. on pp. 3, 7, 19, 35).

50 Bibliography

[Sch+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
„Proximal policy optimization algorithms“. In: arXiv preprint arXiv:1707.06347
(2017) (cit. on p. 19).

[Sil+14] David Silver, Guy Lever, Nicolas Heess, et al. „Deterministic policy gradient
algorithms“. In: ICML. 2014 (cit. on p. 24).

[Sil+16] David Silver, Aja Huang, Chris J Maddison, et al. „Mastering the game of
Go with deep neural networks and tree search“. In: nature 529.7587 (2016),
p. 484 (cit. on p. 1).

[SL06] István Szita and András Lörincz. „Learning Tetris using the noisy cross-entropy
method“. In: Neural computation 18.12 (2006), pp. 2936–2941 (cit. on p. 7).

[Sut+00] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
„Policy gradient methods for reinforcement learning with function approxima-
tion“. In: Advances in neural information processing systems. 2000, pp. 1057–
1063 (cit. on pp. 7, 22).

[Sze+15] Christian Szegedy, Wei Liu, Yangqing Jia, et al. „Going deeper with convolu-
tions“. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 1–9 (cit. on p. 12).

[Tes95] Gerald Tesauro. „Temporal difference learning and TD-Gammon“. In: Commu-
nications of the ACM 38.3 (1995), pp. 58–68 (cit. on p. 17).

[Tod+12] Emanuel Todorov, Tom Erez, and Yuval Tassa. „Mujoco: A physics engine for
model-based control“. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE. 2012, pp. 5026–5033 (cit. on pp. 2, 35).

[UO30] George E Uhlenbeck and Leonard S Ornstein. „On the theory of the Brownian
motion“. In: Physical review 36.5 (1930), p. 823 (cit. on p. 42).

[WD92] Christopher JCH Watkins and Peter Dayan. „Q-learning“. In: Machine learning
8.3-4 (1992), pp. 279–292 (cit. on pp. 8, 26).

[Wie+08] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. „Natural
evolution strategies“. In: Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE Congress on. IEEE. 2008,
pp. 3381–3387 (cit. on p. 7).

[Wil92] Ronald J Williams. „Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning“. In: Machine learning 8.3-4 (1992), pp. 229–256
(cit. on p. 7).

[WP09] Kevin Wampler and Zoran Popović. „Optimal gait and form for animal locomo-
tion“. In: ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 60
(cit. on p. 7).

Bibliography 51

6Appendix

6.1 Gym

6.1.1 arm.py
import numpy as np
import pygame

class Arm():

ROTATION_SPEED = None
__ROTATION_SPEED_TRAINING = 0.4
__ROTATION_SPEED_RENDER = 0.04

__LOWER_ARM_W = 135
__LOWER_ARM_H = 70
__UPPER_ARM_W = 190
__UPPER_ARM_H = 68

def __init__(self, x, y, default_arm_position, attach_beer, render =
True):

if(render):
Arm.ROTATION_SPEED = Arm.__ROTATION_SPEED_RENDER

else:
Arm.ROTATION_SPEED = Arm.__ROTATION_SPEED_TRAINING

if(default_arm_position):
lower_angle = 0
upper_angle = np.pi

else:
lower_angle = np.random.uniform(low = 0, high = 2 * np.pi)
upper_angle = np.random.uniform(low = 0, high = 2 * np.pi)

self.lower_arm = ArmPart(’gym/images/lower_arm.png’, x, y,
Arm.__LOWER_ARM_W, Arm.__LOWER_ARM_H, angle = lower_angle, off
= 20)

53

self.upper_arm = ArmPart(’gym/images/upper_arm.png’, x, y,
Arm.__UPPER_ARM_W, Arm.__UPPER_ARM_H, reference_parts =
[self.lower_arm], angle = upper_angle, off = 36)

self.gripper = Gripper(x, y, [self.lower_arm, self.upper_arm],
attach_beer)

self.arm_group = pygame.sprite.Group()
self.gripper_group = pygame.sprite.Group()

self.arm_group.add(self.lower_arm)
self.arm_group.add(self.upper_arm)

self.gripper_group.add(self.gripper.left_gripper)
self.gripper_group.add(self.gripper.right_gripper)

self.lower_arm.rotate(0)
self.update()

def is_stationary(self):
print("Stat: " + str(self.lower_arm.is_stationary() and

self.upper_arm.is_stationary() and
self.gripper.is_stationary()))

return self.lower_arm.is_stationary() and
self.upper_arm.is_stationary() and self.gripper.is_stationary()

def is_collide(self, beer):

Ignore any sort of collisions if the arm has grabbed the beer
if(self.gripper.has_beer == True):

return False

Check if the lower or upper arm have collided with the object
if(len(pygame.sprite.spritecollide(beer, self.arm_group, False,

pygame.sprite.collide_mask)) > 0):
return True

Check if the gripper has collided with the beer (and the beer is
not attached)

if(len(pygame.sprite.spritecollide(beer, self.gripper_group, False,
pygame.sprite.collide_mask)) > 0):
return True

return False

def rotate_lower_arm(self, radians, dtheta = None):
if(dtheta == None):

dtheta = Arm.ROTATION_SPEED

54 Chapter 6 Appendix

if(radians > 0):
self.lower_arm.dtheta = dtheta

else:
self.lower_arm.dtheta = - dtheta

self.lower_arm.dst_angle += radians

def rotate_upper_arm(self, radians, dtheta = None):
if(dtheta == None):

dtheta = Arm.ROTATION_SPEED
if(radians > 0):

self.upper_arm.dtheta = dtheta
else:

self.upper_arm.dtheta = - dtheta
self.upper_arm.dst_angle += radians

def close(self, beer):
self.gripper.close(beer)

def update(self, beer = None):
Update simulations associated with the individual arm parts
self.arm_group.update()
self.gripper_group.update()
Update top level parts to rotate with lower level parts (as this

happens in the real physical system)
self.upper_arm.rotate(self.lower_arm.src_angle)
self.gripper.update(self.lower_arm.src_angle +

self.upper_arm.src_angle, beer)

def render(self, surface):
self.arm_group.draw(surface)
self.gripper_group.draw(surface)

class ArmPart(pygame.sprite.Sprite):
"""
A class for storing relevant arm segment information.
"""
def __init__(self, image, x, y, w, h, reference_parts = None, angle =

0, off = 0):
super().__init__()
self.base_image = pygame.image.load(image)
self.base_image = pygame.transform.scale(self.base_image, (w, h))
self.base_image.set_alpha(128)
self.image = self.base_image
self.rect = self.image.get_rect()
self.x = x
self.y = y
self.off = off

6.1 Gym 55

self.length = self.image.get_rect()[2]
self.scale = self.length - 2 * off
self.offset = self.scale / 2.0
#self.offset = self.length / 2 - offset

self.reference_parts = reference_parts

self.src_angle = angle # The current relative angle of the arm part
self.dst_angle = angle # The final relative angle of the arm part
self.vis_angle = angle # The current absolute angle of the arm part
self.dtheta = 0 # The speed at which the arm part rotates
self.recenter()

def is_stationary(self):
return self.src_angle == self.dst_angle

def recenter(self):
Base reference
self.rect.center = (self.x, self.y)

Relative self adjustment
self.rect.center += np.array([np.cos(self.vis_angle) * self.offset,

-np.sin(self.vis_angle) * self.offset])

Adjustments based on other reference points
if(self.reference_parts is not None):

for arm_part in self.reference_parts:
self.rect.center += np.array([arm_part.scale *

np.cos(arm_part.vis_angle), -arm_part.scale *
np.sin(arm_part.vis_angle)])

def update(self):
if(self.src_angle != self.dst_angle):

self.src_angle += self.dtheta
self.rotate()

if(self.dtheta < 0 and self.src_angle <= self.dst_angle):
self.dtheta = 0
self.src_angle = self.dst_angle

elif(self.dtheta > 0 and self.src_angle >= self.dst_angle):
self.dtheta = 0
self.src_angle = self.dst_angle

def rotate(self, *args):
vis_angle = self.src_angle

56 Chapter 6 Appendix

if(len(args) == 1):
vis_angle += args[0]

self.image = pygame.transform.rotozoom(self.base_image,
np.degrees(vis_angle), 1)

self.rect = self.image.get_rect()
self.vis_angle = vis_angle
self.recenter()

class Gripper:

INTRA_TOLERANCE = 20 # Radius of the epislon ball
INTER_TOLERANCE = 15 # Displacement of the epsilon ball from the

gripper surface

GRIPPER_HOR_GAP = 16
GRIPPER_VER_GAP = 10

INIT_GRIPPER_ANGLE = 0.5 * np.pi
CLOSED_GRIPPER_ANGLE = 0.2 * np.pi

__GRIPPER_W = 80
__GRIPPER_H = 45 + 37

def __init__(self, x, y, reference_parts, attach_beer):
self.left_gripper = ArmPart(’gym/images/left_gripper.png’, x, y,

Gripper.__GRIPPER_W, Gripper.__GRIPPER_H, reference_parts =
reference_parts)

self.right_gripper = ArmPart(’gym/images/right_gripper.png’, x, y,
Gripper.__GRIPPER_W, Gripper.__GRIPPER_H, reference_parts =
reference_parts)

self.alpha = np.arctan(Gripper.GRIPPER_VER_GAP /
Gripper.GRIPPER_HOR_GAP)

self.radius = np.sqrt(Gripper.GRIPPER_HOR_GAP ** 2 +
Gripper.GRIPPER_VER_GAP ** 2)

if(attach_beer):
self.left_gripper.src_angle = Gripper.CLOSED_GRIPPER_ANGLE
self.left_gripper.dst_angle = Gripper.CLOSED_GRIPPER_ANGLE
self.right_gripper.src_angle = - Gripper.CLOSED_GRIPPER_ANGLE
self.right_gripper.dst_angle = - Gripper.CLOSED_GRIPPER_ANGLE
self.closed = True
self.has_beer = True

else:
self.left_gripper.src_angle = Gripper.INIT_GRIPPER_ANGLE
self.left_gripper.dst_angle = Gripper.INIT_GRIPPER_ANGLE

6.1 Gym 57

self.right_gripper.src_angle = - Gripper.INIT_GRIPPER_ANGLE
self.right_gripper.dst_angle = - Gripper.INIT_GRIPPER_ANGLE
self.closed = False
self.has_beer = False

def is_stationary(self):
return self.left_gripper.is_stationary() and

self.right_gripper.is_stationary()

def recenter(self, angle):

Relative self adjustment
self.left_gripper.rect.center += np.array([np.cos(angle +

self.alpha) * self.radius, -np.sin(angle + self.alpha) *
self.radius])

self.right_gripper.rect.center += np.array([np.cos(angle -
self.alpha) * self.radius, -np.sin(angle - self.alpha) *
self.radius])

def update(self, angle, beer = None):
self.left_gripper.rotate(angle)
self.right_gripper.rotate(angle)
self.recenter(angle)

if(beer is not None and self.has_beer):
x_b, y_b = self.get_beer_coordinates(beer, 0)
beer.set_angle(angle)
beer.set_pos(x_b, y_b)

def get_beer_coordinates(self, beer, displacement):
r = beer.radius
w = self.left_gripper.reference_parts[-1].length / 2
h = w + displacement + r
ang = self.left_gripper.reference_parts[0].src_angle +

self.left_gripper.reference_parts[1].src_angle
x_b = self.left_gripper.reference_parts[-1].rect.centerx + h *

np.cos(ang)
y_b = self.left_gripper.reference_parts[-1].rect.centery - h *

np.sin(ang)

return (x_b, y_b)

def beer_in_reach(self, beer):
x, y = beer.get_pos()
x_b, y_b = self.get_beer_coordinates(beer, Gripper.INTER_TOLERANCE)
return ((x - x_b) ** 2 + (y - y_b) ** 2 < Gripper.INTRA_TOLERANCE

** 2)

58 Chapter 6 Appendix

def close(self, beer):
if(self.closed):

return
self.closed = True
self.left_gripper.dtheta = - Arm.ROTATION_SPEED
self.left_gripper.dst_angle = Gripper.CLOSED_GRIPPER_ANGLE
self.right_gripper.dtheta = Arm.ROTATION_SPEED
self.right_gripper.dst_angle = - Gripper.CLOSED_GRIPPER_ANGLE

Attach beer if it is within a given region centered at the tip of
the upper arm

if(self.beer_in_reach(beer)):
self.has_beer = True

6.1.2 beer.py
import pygame
import numpy as np
from arm import Gripper

class Beer(pygame.sprite.Sprite):

__BEER_RADIUS = 32

ALPHA = np.pi / 6 # Spawning angle
LOWER_GEN_BOUND = 142 # Spawning lower bound for radius

def __init__(self, x, y, arm):
super().__init__()
self.base_image = pygame.image.load(’gym/images/beer.png’)
self.base_image = pygame.transform.scale(self.base_image, (2 *

Beer.__BEER_RADIUS, 2 * Beer.__BEER_RADIUS))
self.image = self.base_image
self.rect = self.image.get_rect()
self.radius = self.rect.w / 2
self.__init(x, y, arm) # Set the initial position
while(arm.is_collide(self)): # Keep initialising until there is no

collision
self.__init(x, y, arm)

def __init(self, x, y, arm):
init_r = np.random.uniform(low = Beer.LOWER_GEN_BOUND, high =

arm.lower_arm.scale + arm.upper_arm.scale)
init_theta = np.random.uniform(low = np.pi - Beer.ALPHA, high =

np.pi + Beer.ALPHA)

6.1 Gym 59

init_x = int(x + init_r * np.cos(init_theta))
init_y = int(y - init_r * np.sin(init_theta))
self.set_pos(init_x, init_y)
self.theta = init_theta

def set_pos(self, x, y):
self.rect.centerx = x
self.rect.centery = y

def set_angle(self, angle):
self.image = pygame.transform.rotozoom(self.base_image,

np.degrees(angle), 1)
self.rect = self.image.get_rect()

def get_pos(self):
return (self.rect.centerx, self.rect.centery)

def update(self):
pass

def render(self, surface):
surface.blit(self.image, self.rect)

6.1.3 environment.py
import pygame
import pygame.locals
import sys
import numpy as np

from arm import Arm, Gripper
from beer import Beer

import robot.motor_control as robot

class Environment():

RENDER_WIDTH = 800
RENDER_HEIGHT = 800

ACTION_SCALES = np.float32([0.3 * np.pi, 0.3 * np.pi])
STATE_SCALES = np.float32([2 * np.pi, 2 * np.pi, RENDER_WIDTH,

RENDER_HEIGHT])

REWARD_SCALE = 0.7

60 Chapter 6 Appendix

Goals used for the physical experiments
GOAL_1 = (int(RENDER_WIDTH / 2 - 200 * np.cos(np.pi / 4)),

int(RENDER_HEIGHT / 2 - 200 * np.sin(np.pi / 4)))
GOAL_2 = (int(RENDER_WIDTH / 2), int(RENDER_HEIGHT / 2 - 100))
GOAL_3 = (int(RENDER_WIDTH / 2 + 100 * np.cos(np.pi / 4)),

int(RENDER_HEIGHT / 2 - 100 * np.sin(np.pi / 4)))
GOAL_4 = (int(RENDER_WIDTH / 2 + 260), int(RENDER_HEIGHT / 2))
GOAL_5 = (int(RENDER_WIDTH / 2 + 200 * np.cos(np.pi / 4)),

int(RENDER_HEIGHT / 2 + 200 * np.sin(np.pi / 4)))
GOAL_6 = (int(RENDER_WIDTH / 2), int(RENDER_HEIGHT / 2 + 150))
GOAL_7 = (int(RENDER_WIDTH / 2 - 150 * np.cos(np.pi / 4)),

int(RENDER_HEIGHT / 2 + 150 * np.sin(np.pi / 4)))

def __init__(self, config = 1, robot_control = False, render = True):
print("Goal 1: " + str(Environment.GOAL_1))
print("Goal 2: " + str(Environment.GOAL_2))
print("Goal 3: " + str(Environment.GOAL_3))
print("Goal 4: " + str(Environment.GOAL_4))
print("Goal 5: " + str(Environment.GOAL_5))
print("Goal 6: " + str(Environment.GOAL_6))
print("Goal 7: " + str(Environment.GOAL_7))

self.config = config
self.robot_control = robot_control
if(self.robot_control):

robot.connect()
self.render = render
pygame.init()
if(render):

self.surface =
pygame.display.set_mode((Environment.RENDER_WIDTH,
Environment.RENDER_HEIGHT))

self.fpsClock = pygame.time.Clock()
self.reset()

def reset(self, beer_location = None, goal_location = None):
if(self.config == 0 or self.config == 1):

default_arm_position = True
attach_beer = False

elif(self.config == 2):
default_arm_position = False
attach_beer = True

self.arm = Arm(Environment.RENDER_WIDTH / 2,
Environment.RENDER_HEIGHT / 2, default_arm_position,
attach_beer, render = self.render)

self.beer = Beer(Environment.RENDER_WIDTH / 2,
Environment.RENDER_HEIGHT / 2, self.arm)

6.1 Gym 61

self.goal = self.__sample_goal(Environment.RENDER_WIDTH / 2,
Environment.RENDER_HEIGHT / 2, self.arm)

if(beer_location is not None):
self.beer.set_pos(beer_location[0], beer_location[1])

if(goal_location is not None):
self.goal = goal_location

return self.__get_observation()

def sample_action(self):
return np.float32([np.random.uniform(low = -1, high = 1) for _ in

range(len(Environment.ACTION_SCALES))])

def step(self, action, render_goal = True, render_goals = False,
render_grasp_circle = False, render_boarders = False):
action *= Environment.ACTION_SCALES
rot_lower = action[0]
rot_upper = action[1]

Automatically close the gripper if the beer is in reach
if(self.arm.gripper.has_beer == False and

self.arm.gripper.beer_in_reach(self.beer)):
self.arm.close(self.beer)
if(self.robot_control):

robot.close_gripper()
else:

if(np.linalg.norm(np.float32(self.goal) -
np.float32(self.beer.get_pos())) > 20):
self.arm.rotate_lower_arm(rot_lower)
self.arm.rotate_upper_arm(rot_upper)
if(self.robot_control):

robot.rotate_lower_arm(rot_lower)
robot.rotate_upper_arm(rot_upper)

collided = self.arm.is_collide(self.beer)

if(self.arm.is_stationary() or collided):
if(self.render):

self._render(render_goal, render_goals,
render_grasp_circle, render_boarders)

Update until action is completed
while(self.arm.is_stationary() == False and collided == False):

self.arm.update(beer = self.beer)
collided = self.arm.is_collide(self.beer)

62 Chapter 6 Appendix

if(self.render):
self._render(render_goal, render_goals,

render_grasp_circle, render_boarders)

observation = self.__get_observation()

if(self.config == 0):
if(self.arm.gripper.has_beer == False):

target_location =
np.float32(self.arm.gripper.get_beer_coordinates(self.beer,
Gripper.INTER_TOLERANCE))

else:
target_location = self.goal

elif(self.config == 1):
target_location =

np.float32(self.arm.gripper.get_beer_coordinates(self.beer,
Gripper.INTER_TOLERANCE))

elif(self.config == 2):
target_location = self.goal

reward = Environment.REWARD_SCALE *
self.__get_reward(self.beer.get_pos(), target_location,
rot_lower, rot_upper, collided)

return (observation, reward, collided)

def __get_observation(self):

if(self.config == 0):
if(self.arm.gripper.has_beer == False):

obs = (self.arm.lower_arm.src_angle % (2 * np.pi),
self.arm.upper_arm.src_angle % (2 * np.pi),
self.beer.rect.centerx, self.beer.rect.centery)

else:
obs = (self.arm.lower_arm.src_angle % (2 * np.pi),

self.arm.upper_arm.src_angle % (2 * np.pi),
self.goal[0], self.goal[1])

elif(self.config == 1):
obs = (self.arm.lower_arm.src_angle % (2 * np.pi),

self.arm.upper_arm.src_angle % (2 * np.pi),
self.beer.rect.centerx, self.beer.rect.centery)

elif(self.config == 2):
obs = (self.arm.lower_arm.src_angle % (2 * np.pi),

self.arm.upper_arm.src_angle % (2 * np.pi), self.goal[0],
self.goal[1])

return np.float32(obs)

6.1 Gym 63

def __get_reward(self, beer_location, target_location, r1, r2,
collided):
beer_location = np.float32(beer_location)
target_location = np.float32(target_location)
reward_dist = - np.linalg.norm(beer_location - target_location) /

120
reward_ctrl = - np.square(np.float32((r1, r2))).sum() / 5

return reward_dist + reward_ctrl

def __sample_goal(self, x, y, arm):
init_r = np.random.uniform(low = Beer.LOWER_GEN_BOUND, high =

arm.lower_arm.scale + arm.upper_arm.scale)
init_theta = np.random.uniform(low = 0, high = 2 * np.pi)
init_x = int(x + init_r * np.cos(init_theta))
init_y = int(y - init_r * np.sin(init_theta))
return (init_x, init_y)

def _render(self, render_goal, render_goals, render_grasp_circle,
render_boarders):
white = (255, 255, 255)
self.surface.fill(white)

if(render_goal):
self.__render_goal()

if(render_goals):
self.__render_goals()

if(render_grasp_circle):
self.__render_grasp_circle()

if(render_boarders):
self.__render_boarders()

self.beer.render(self.surface)
self.arm.render(self.surface)

Check for quit + bug fix
for event in pygame.event.get():

if event.type == pygame.locals.QUIT:
pygame.quit()
sys.exit()

pygame.display.update()
self.fpsClock.tick(60)

64 Chapter 6 Appendix

def __render_goal(self):
blue = (135, 206, 250)
pygame.draw.circle(self.surface, blue, self.goal, 20)

def __render_grasp_circle(self):
purple = (219, 112, 147)
pygame.draw.circle(self.surface, purple,

np.int32(self.arm.gripper.get_beer_coordinates(self.beer,
Gripper.INTER_TOLERANCE)), Gripper.INTRA_TOLERANCE)

def __render_boarders(self):
red = (250, 128, 114)
white = (255, 255, 255)
pygame.draw.circle(self.surface, red, (int(Environment.RENDER_WIDTH

/ 2), int(Environment.RENDER_HEIGHT / 2)),
self.arm.lower_arm.scale + self.arm.upper_arm.scale)

pygame.draw.circle(self.surface, white,
(int(Environment.RENDER_WIDTH / 2),
int(Environment.RENDER_HEIGHT / 2)), Beer.LOWER_GEN_BOUND)

def __render_goals(self):
blue = (135, 206, 250)
pygame.draw.circle(self.surface, blue, Environment.GOAL_1, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_2, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_3, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_4, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_5, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_6, 10)
pygame.draw.circle(self.surface, blue, Environment.GOAL_7, 10)

6.1.4 motor_control.py
import numpy as np
import nxt.locator
from nxt.motor import *

MOTOR_POWER = 40
LOWER_ARM_PORT = PORT_A
UPPER_ARM_PORT = PORT_C
GRIPPER_PORT = PORT_B

lower_motor = None
upper_motor = None
gripper_motor = None

6.1 Gym 65

def connect():
global lower_motor, upper_motor, gripper_motor
brick = nxt.locator.find_one_brick()
lower_motor = Motor(brick, LOWER_ARM_PORT)
upper_motor = Motor(brick, UPPER_ARM_PORT)
gripper_motor = Motor(brick, GRIPPER_PORT)

def rotate_lower_arm(radians):
degrees = (radians / (2 * np.pi)) * (7 * 360) * 0.99
if(degrees > 0):

lower_motor.turn(MOTOR_POWER, np.abs(degrees), brake = False)
else:

lower_motor.turn(-MOTOR_POWER, np.abs(degrees), brake = False)

def rotate_upper_arm(radians):
degrees = (radians / (2 * np.pi)) * (7 * 360) * 1
if(degrees > 0):

upper_motor.turn(MOTOR_POWER, np.abs(degrees), brake = False)
else:

upper_motor.turn(-MOTOR_POWER, np.abs(degrees), brake = False)

def close_gripper():
gripper_motor.turn(MOTOR_POWER, int(4.3 * 360))

6.2 DDPG

6.2.1 buffer.py
import numpy as np

import random
from collections import deque

class MemoryBuffer:

MAX_BUFFER = 100000

def __init__(self, size = MAX_BUFFER):
self.buffer = deque(maxlen=size)
self.maxSize = size
self.len = 0

def sample(self, count):
batch = []

66 Chapter 6 Appendix

count = min(count, self.len)
batch = random.sample(self.buffer, count)
s_arr = np.float32([arr[0] for arr in batch])
a_arr = np.float32([arr[1] for arr in batch])
r_arr = np.float32([arr[2] for arr in batch])
s1_arr = np.float32([arr[3] for arr in batch])
return s_arr, a_arr, r_arr, s1_arr

def len(self):
return self.len

def add(self, s, a, r, s1):
transition = (s,a,r,s1)
self.len += 1
if self.len > self.maxSize:

self.len = self.maxSize
self.buffer.append(transition)

6.2.2 main.py
import numpy as np

import train
import buffer
import sys
sys.path.insert(0, ’./gym’)
from environment import Environment
import time

class TestPolicies():

EPISODES = 1
TIME_STEPS = 60

def __init__(self, pol1, pol2):
self.env = Environment(0, robot_control = True, render = True)
self.trainer1 = train.Trainer(1, len(Environment.STATE_SCALES),

len(Environment.ACTION_SCALES), None)
self.trainer1.load_models(pol1)
self.trainer2 = train.Trainer(2, len(Environment.STATE_SCALES),

len(Environment.ACTION_SCALES), None)
self.trainer2.load_models(pol2)

def test(self):

fails = 0
distances = []

6.2 DDPG 67

for episode in range(TestPolicies.EPISODES):

print("EPISODE: ", episode)

For the physical experiments
beer_location = (int(Environment.RENDER_WIDTH / 2 - 180),

int(Environment.RENDER_HEIGHT / 2))
goal_location = Environment.GOAL_2

For the virtual experiments
beer_location = None
goal_location = None

state = self.env.reset(beer_location = beer_location,
goal_location = goal_location)

failed = False
for t in range(TestPolicies.TIME_STEPS):

state /= self.env.STATE_SCALES

if(self.env.arm.gripper.has_beer == False):
action = self.trainer1.get_exploitation_action(state)

else:
action = self.trainer2.get_exploitation_action(state)

new_state, reward, done = self.env.step(action)
state = new_state

if(done):
failed = True
fails += 1
break

if(self.env.robot_control):
time.sleep(0.5)

if(failed == False):
d = np.linalg.norm(np.float32(self.env.goal) -

np.float32(self.env.beer.get_pos()))
distances.append(d)

print("FAILED: " + str(fails))
print("Mean: " + str(np.mean(distances)))
print("STD: " + str(np.std(distances)))

68 Chapter 6 Appendix

class TrainPolicy():

EPISODES = 10000
TIME_STEPS = 30
ALPHA = 0.3

def __init__(self, config):
self.config = config
self.env = Environment(self.config, render = False)
self.ram = buffer.MemoryBuffer()
self.trainer = train.Trainer(config, len(Environment.STATE_SCALES),

len(Environment.ACTION_SCALES), self.ram)

def train(self, alpha = ALPHA):
for episode in range(TrainPolicy.EPISODES):

print("EPISODE: ", episode)

tot_reward = 0
state = self.env.reset() / self.env.STATE_SCALES

for t in range(TrainPolicy.TIME_STEPS):

if(episode % 10 == 0):
action = self.trainer.get_exploitation_action(state)

else:
if(np.random.uniform() <= alpha):

action = self.trainer.get_exploration_action(state)
else:

action = self.env.sample_action()

new_state, reward, _ = self.env.step(action)
new_state /= Environment.STATE_SCALES
tot_reward += reward

self.ram.add(state, action, reward, new_state)
state = new_state
self.trainer.optimize()

Log results
if(episode % 10 == 0):

with open("results_" + str(self.config) + ".txt", ’a+’) as f:
f.write(str(episode) + ", " + str(tot_reward) + "\n")

Save models
if(episode % 100 == 0):

self.trainer.save_models(episode)

6.2 DDPG 69

print("Total Reward: " + str(tot_reward))

trainer1 = TrainPolicy(1)
trainer1.train()

trainer2 = TrainPolicy(2)
trainer2.train()

for i in range(20):
time.sleep(1)
print(i)

tester = TestPolicies(5000, 9900)
tester.test()

6.2.3 model.py
import torch

import torch.nn as nn
import torch.nn.functional as F
import numpy as np

EPS = 0.003

def fanin_init(size, fanin=None):
fanin = fanin or size[0]
v = 1. / np.sqrt(fanin)
return torch.Tensor(size).uniform_(-v, v)

class Critic(nn.Module):

def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()

self.state_dim = state_dim
self.action_dim = action_dim

self.fcs1 = nn.Linear(state_dim,256)
self.fcs1.weight.data = fanin_init(self.fcs1.weight.data.size())
self.fcs2 = nn.Linear(256,128)
self.fcs2.weight.data = fanin_init(self.fcs2.weight.data.size())

self.fca1 = nn.Linear(action_dim,128)
self.fca1.weight.data = fanin_init(self.fca1.weight.data.size())

70 Chapter 6 Appendix

self.fc2 = nn.Linear(256,128)
self.fc2.weight.data = fanin_init(self.fc2.weight.data.size())

self.fc3 = nn.Linear(128,1)
self.fc3.weight.data.uniform_(-EPS,EPS)

def forward(self, state, action):
s1 = F.relu(self.fcs1(state))
s2 = F.relu(self.fcs2(s1))
a1 = F.relu(self.fca1(action))
x = torch.cat((s2,a1),dim=1)
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

class Actor(nn.Module):

def __init__(self, state_dim, action_dim):
super(Actor, self).__init__()

self.state_dim = state_dim
self.action_dim = action_dim

self.fc1 = nn.Linear(state_dim,256)
self.fc1.weight.data = fanin_init(self.fc1.weight.data.size())

self.fc2 = nn.Linear(256,128)
self.fc2.weight.data = fanin_init(self.fc2.weight.data.size())

self.fc3 = nn.Linear(128,64)
self.fc3.weight.data = fanin_init(self.fc3.weight.data.size())

self.fc4 = nn.Linear(64,action_dim)
self.fc4.weight.data.uniform_(-EPS,EPS)

def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
action = F.tanh(self.fc4(x))

return action

6.2.4 train.py

6.2 DDPG 71

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

import numpy as np
import math

import utils
import model

BATCH_SIZE = 128
LEARNING_RATE = 0.001
GAMMA = 0.99
TAU = 0.001

class Trainer:

def __init__(self, config, state_dim, action_dim, ram):
self.config = config
self.ram = ram
self.noise = utils.OrnsteinUhlenbeckActionNoise(action_dim)

self.actor = model.Actor(state_dim, action_dim)
self.target_actor = model.Actor(state_dim, action_dim)
self.actor_optimizer =

torch.optim.Adam(self.actor.parameters(),LEARNING_RATE)

self.critic = model.Critic(state_dim, action_dim)
self.target_critic = model.Critic(state_dim, action_dim)
self.critic_optimizer =

torch.optim.Adam(self.critic.parameters(),LEARNING_RATE)

utils.hard_update(self.target_actor, self.actor)
utils.hard_update(self.target_critic, self.critic)

def get_exploitation_action(self, state):
state = Variable(torch.from_numpy(state))
action = self.target_actor.forward(state).detach()
return action.data.numpy()

def get_exploration_action(self, state):
state = Variable(torch.from_numpy(state))
action = self.actor.forward(state).detach()
new_action = action.data.numpy() + self.noise.sample()
return new_action

72 Chapter 6 Appendix

def optimize(self):
s1, a1, r1, s2 = self.ram.sample(BATCH_SIZE)
s1 = Variable(torch.from_numpy(s1))
a1 = Variable(torch.from_numpy(a1))
r1 = Variable(torch.from_numpy(r1))
s2 = Variable(torch.from_numpy(s2))

a2 = self.target_actor.forward(s2).detach()
next_val = torch.squeeze(self.target_critic.forward(s2, a2).detach())
y_expected = r1 + GAMMA*next_val
y_predicted = torch.squeeze(self.critic.forward(s1, a1))
loss_critic = F.smooth_l1_loss(y_predicted, y_expected)
self.critic_optimizer.zero_grad()
loss_critic.backward()
self.critic_optimizer.step()

pred_a1 = self.actor.forward(s1)
loss_actor = -1 * torch.sum(self.critic.forward(s1, pred_a1))
self.actor_optimizer.zero_grad()
loss_actor.backward()
self.actor_optimizer.step()

utils.soft_update(self.target_actor, self.actor, TAU)
utils.soft_update(self.target_critic, self.critic, TAU)

def save_models(self, episode_count):
torch.save(self.target_actor.state_dict(), ’./Models_’ +

str(self.config) + ’/’ + str(episode_count) + ’_actor.pt’)
torch.save(self.target_critic.state_dict(), ’./Models_’ +

str(self.config) + ’/’ + str(episode_count) + ’_critic.pt’)

def load_models(self, episode):
self.actor.load_state_dict(torch.load(’./Models_’ + str(self.config)

+ ’/’ + str(episode) + ’_actor.pt’))
self.critic.load_state_dict(torch.load(’./Models_’ +

str(self.config) + ’/’ + str(episode) + ’_critic.pt’))
utils.hard_update(self.target_actor, self.actor)
utils.hard_update(self.target_critic, self.critic)

6.2.5 utils.py
import numpy as np

import torch
import shutil
import torch.autograd as Variable

6.2 DDPG 73

def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(),

source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data

* tau)

def hard_update(target, source):
for target_param, param in zip(target.parameters(),

source.parameters()):
target_param.data.copy_(param.data)

Based on
http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab

class OrnsteinUhlenbeckActionNoise:

def __init__(self, action_dim, mu = 0, theta = 0.15, sigma = 0.2):
self.action_dim = action_dim
self.mu = mu
self.theta = theta
self.sigma = sigma
self.X = np.ones(self.action_dim) * self.mu

def reset(self):
self.X = np.ones(self.action_dim) * self.mu

def sample(self):
dx = self.theta * (self.mu - self.X)
dx = dx + self.sigma * np.random.randn(len(self.X))
self.X = self.X + dx
return self.X

74 Chapter 6 Appendix

	Titlepage
	Acknowledgement
	1 Introduction
	1.1 Reinforcement Learning
	1.2 Problem Motivation
	1.3 Problem Definition and Contribution
	1.4 Outline

	2 Preliminaries
	2.1 Markov Decision Process
	2.2 Policies
	2.3 Value Functions
	2.4 Deep Learning
	2.4.1 Backpropagation Derivation

	2.5 Deep Reinforcement Learning

	3 Policy Gradients
	3.1 Introduction
	3.2 Policy Gradient
	3.3 Deterministic Policy Gradient
	3.4 Deep Deterministic Policy Gradients

	4 Robotic Grasping
	4.1 Introduction
	4.1.1 Simplified Problem using MDP decomposition

	4.2 Simulation
	4.2.1 Introduction
	4.2.2 The Arm
	4.2.3 The Gripper

	4.3 Physical Development
	4.4 DDPG Implementation
	4.5 Experiments and Results
	4.5.1 Training
	4.5.2 Testing

	5 Conclusion
	Bibliography
	6 Appendix
	6.1 Gym
	6.1.1 arm.py
	6.1.2 beer.py
	6.1.3 environment.py
	6.1.4 motor_control.py

	6.2 DDPG
	6.2.1 buffer.py
	6.2.2 main.py
	6.2.3 model.py
	6.2.4 train.py
	6.2.5 utils.py

